中川村公共下水道事業変更計画書

目 次

Ι	中川村公共下水	《道事業計画変更理由書	1
П	中川村公共下水	《道事業計画書	3
	(第1表)	予定処理区域調書	4
	(第2表)	吐口調書	5
	(第3表)	管渠調書	6
	(第4表)	処理施設調書	7
Ш	中川村公共下水	(道事業計画説明書	11

I 中川村公共下水道事業計画変更理由書

中川村公共下水道事業計画変更理由書

本村の公共下水道事業計画は、大草処理区と片桐処理区に分かれている。

大草処理区は、平成5年度に処理区全域57haの区域について事業認可を取得し、平成8年度に大草浄化センターの供用開始を行った。

片桐処理区は、平成8年度に中心市街地や周辺集落の約95haの区域について事業認可を受け、平成11年に計画の見直しにより事業認可の変更を実施し、平成14年度に10haの区域を追加し、処理区全域は105haとなっている。

今回の事業計画は、本村の下水道は整備が完了しているが、今後も下水道施設の維持管理とともに改築更新事業を実施していく予定であるため、計画期間を延伸するもの及び、「下水道事業における事業マネジメント実施に関するガイドラインー2024年版ー」による各施策の目標等の記載を新たに行うものである。

なお、事業計画区域及び管渠、処理場施設計画の変更は行わない。

Ⅱ 中川村公共下水道事業変更計画書

公共下水道管理者中川村長

工事着手の年月日

(大草処理区) 平成5年10月22日(片桐処理区) 平成9年4月3日

工事完了の予定年月日 令和8年3月31日

令和13年3月31日

(第1表)

(3) 1 3()		
	予定処理区	区域調書
処理区域の面積	約 162 ヘクタール 処理区域	長野県中川村
人住区 域》面積	//J 102 7 7 7 / 人工区域	(区域は下水道計画一般図表示のとおり)
処理区の名称	面 積 (単位:ヘクタール)	摘要
大草処理区	約 57 ヘクタール	
片桐処理区	約 105 ヘクタール	

(第2表)

吐 口 調 書								
処理区の 名称	主要な 吐口の種類	主要な 吐口の番号 または名称	主要な	計画放流量 (m³/s)	放流先の 名 称	摘	要	
大草 処理区	処理施設	大草浄化 センター 放流渠	中川村大草	0.005	天竜川			
片桐 処理区	処理施設	片桐浄化 センター 放流渠	中川村片桐	0.010	農業用排水路			

(第3表)

管 渠 調 書 (汚 水)								
処理区の 名称	主要な管渠の うちのり寸法 (単位:ミリメートル)	延 長 (単位:メートル)	点検箇所 の数	摘 要				
大草 処理区	© 200	1,380	ı	_				
片桐 処理区	∘ 150 ∘ 200	680 1, 620	4 箇所	方法:マンホール内か らの管内目視若しくは 管ロテレビカメラを用 いる方法 頻度:5年に1回以上				
	計	3, 680						

(第4表-1)

処理施設調書									
終末処理 場等の 名称	位置	敷地 面積 (単位: アール)	計画放流水質	<u></u>	処 睛天日 最大 (単位: 立法メ ートル)	理 能 雨天日 最大 (単位: 立法メ ートル)	力 計画 処理 人口	摘要	
大草浄化センター	中川村大草	19. 1	BOD 15 mg/l	オキシディッチ法	500		1, 200	計画 下水最大) 466 m³/日 全体計画 处理最大) 500 m³/日 流入水質 BOD 150 mg/1 SS 120mg/1 处理水質 BOD 15 mg/1 SS 30 mg/1	

(第4表-2)

終末処理場等の敷地内の主要な施設							
終末処理場 等の名称	主要な施設の名称	個数	構造	能力	摘要		
大草浄化	流入渠		円形管 ●200 mm				
センター							
	汚水ピット	2台	マンホール形式	ポンプ能力:0.8 m³/分			
		2 口	φ1.5m	2台(うち1台予備)			
	オキシテ゛ーションテ゛ィッチ		プレキャストコンクリート製	ェアレーション時間:27hr			
		1池	組立式無終水路				
			曝気撹拌装置一式				
	最終沈殿池	1 1/4	プレキャストコンクリート製	水面積負荷			
		1池	組立式	:8 m³/m²·日			
	塩素混和池	1 VIII	プレキャストコンクリート製	接触時間:26分			
		1池	組立式方向水路				
	放流渠		円形管 ●200 mm				
	汚泥濃縮槽	1 +#	プレキャストコンクリート製	固形物負荷			
		1 槽	組立式	: 7Kg/m²·日			
	汚泥貯留槽	0 	プレキャストコンクリート製	貯留容量:8日			
		2 槽	組立式				
	管理棟		プレキャスト鉄筋	倉庫			
		1棟	コンクリート造平屋建	管理制御室			
				便所			

(第4表-3)

	処 理 施 設 調 書									
終末処理 場等の 名称	位置	敷地 面積 (単位: アール)	計画放流水質	処理方法	処 睛天日 最大 (単位: 立法メ ートル)	理 能 雨天日 最大 (単位: 立法メ ートル)	力 計画 処理 人口	摘要		
片桐浄化センター	中川村	42. 2	BOD 15 mg/l	オキシデンディッチ法	900		2, 300	日最大流 入水量 883 m³/日 流入水質 BOD 150 mg/1 SS 120mg/1 処理水質 BOD 20 mg/1 SS 30 mg/1		

(第4表-4)

終末処理場等の敷地内の主要な施設							
終末処理場 等の名称	主要な施設の名称	個数	構造	能力	摘要		
片桐浄化 センター	流入渠	2	円形管 ●150 mm ●75 mm				
	オキシテ゛ーションテ゛ィッチ	1池	組立式無終水路 曝気撹拌装置一式	ェアレーション時間:24hr			
	最終沈殿池	1池	組立式	水面積負荷 : 8 ㎡/㎡・日			
	塩素混和池 1池		プレキャストコンクリート製組式方向水路	接触時間:15分			
	放流渠	1	円形管 ●200 mm				
	汚泥濃縮槽 1 槽		プ レキャストコンクリート製組立式	固形物負荷 : 15 Kg/㎡・日			
	汚泥貯留槽 2 槽		プ レキャストコンクリート製 組立式	製 貯留容量:5日			
	機械脱水	1台	移動脱水車	処理能力:6.67 m³/hr			
	管理棟	1棟	プ レキャスト鉄筋 コンクリート造平屋建	倉庫 管理制御室 便所			

Ⅲ 中川村公共下水道事業計画説明書

目 次

1. 計画	前の概要
1 - 1.	全体計画の概要 1
1 - 2.	事業計画の概要]
2. 予定	処理区及びその周辺の地域の地形及び土地利用の状況
2-1.	地形及び土地の利用状況 1
2-2.	下水の排除方式及びその決定理由 1
2 - 3.	予定処理区域及びその決定の理由 1
2 - 4.	管渠及び処理施設の位置決定の理由 1
3. 計画	「下水量及びその算出の根拠
	- 人口及び人口密度並びにこれらの推定根拠 2
	1人1日あたりの汚水量及びその推定の根拠 2
	家庭排水、工場排水、地下水等の量及びこれら推定の根拠 2
3 - 4.	主要な管渠の流量計算
推定 4-1. 4-2. 4-3. 4-4. 4-5.	下水道からの放流水及び処理施設において処理すべき下水の予定水質並びにその根拠 一般家庭下水の予定水質、汚濁負荷量及びその推定の根拠
	処理施設の容量計算
	《の放流先の状況
	基本的な考え方
	放流先の目標水質の検討
	目標水質の設定
	下水処理における水質向上の見通し 2
5 - 5.	下水道整備による現況及び事業計画の汚泥解析モデル

5 - 6.	法令による規制等の確認	27
5 - 7.	流総計画との整合性	27
5 - 8.	事業計画における計画放流水質の決定	27
c = /	N. 1. 左左の工事連のマウ姫 T. パンのマウ 中海	00
0. #元	計年度の工事費の予定額及びその予定財源	28
7. その	O他	
7 - 1.	施設の設置に関する方針	29
7 - 2.	施設の機能の維持に関する方針	30
7 - 3.	汚泥の最終処分計画及び処分地	31
7 - 4.	下水道条例	32
7 - 5.	処理場容量計算書	45

1 計画の概要

1-1. 全体計画の概要および理由

上位計画である天竜川流域別下水道整備総合計画において、天竜川水質汚濁防止の観点から、中川村は用途指定地域の整備が位置付けられている。

また、中川村においては、公共下水道計画立案に先立ち、平成元年に下水道整備構想エリアマップを作成し、集合処理区と個別処理区域の仕分けを行い、整備手法案の作成を行った。

本公共下水道計画は上記諸計画に基づき大草・片桐地区の公共下水道を策定した。 中川村公共下水道全体計画の概要は、天竜川の東に位置する大草処理区57haで計画人口 1,200人、計画処理水量は日最大で466㎡/日、天竜川の西に位置する片桐処理区を105ha で計画人口2,300人、計画処理水量は日最大で883㎡/日である。

1-2. 事業計画の概要

事業計画区域は、全体計画と同様の162ha(大草処理区57ha、片桐処理区105ha)である。 事業完了年度は令和12年度末で、計画人口並びに計画処理水量については全体計画と同 値である。

全体計画と事業計画の概要は表1-1に示すとおりである。

中川村公共下水道事業変更計画書

令和7年度

長野県中川村

表1-1 中川村公共下水道計画(大草処理区)の概要

Τî			事業計		計画	
項目		全体計画	既計画	変更計画	備考	
処理区名		大草処理区	大草処理区	大草処理区		
	票年次		令和12年	令和7年	令和12年	
	余方法		分流式	分流式	同左	
計画区	域 (ha)		57	57	IJ	
計画処理丿	人口(人	.)	1, 200	1, 200	11	
家庭汚水」	星	日平均	270	270	11	基礎家庭と営業を 含めた給水実績に
原単価(1/人	• 日)	日最大	320	320	"	基づき設定。経年
(営業を含む	ts)	時間最大	640	640	11	変化は無いものとする。
地下水量原単	位(1/人	• 目)	64	64	IJ	1人1日最大家庭汚水量の20%、時間変動無し。
		家庭	324	324	IJ	
	日平均	工場	5	5	11	
	日十均	地下水	77	77	11	
		計	406	406	11	
	日最大	家庭	384	384	IJ	
計画汚水量		工場	5	5	IJ	
(m3/日)		地下水	77	77	IJ	
		計	466	466	IJ	
		家庭	768	768	11	
	時間最大	工場	10	10	11	
	F/J [F/J AX / \	地下水	77	77	11	
		計	855	855	11	
	家庭	BOD	49	49	11	1 佐利志(* # 3 *
汚濁負荷量 原単位		SS	39	39	IJ	上位計画に基づき 設定。経年変化は
派辛匹 (g/人・目)	工場	BOD			11	無いものとする。
		SS			IJ	, , ,
	家庭	BOD	58	58	11	
		SS	47	47	IJ	
汚濁負荷量	工場	BOD	3	3	11	
(Kg/目)		SS	1	1	11	
	計	BOD	61	61	11	
	μΙ	SS	48	48	11	
流入水質 BOD		150	150	IJ		
(mg/1) SS		120	120	"		
放流先			天竜川	11		
処理方法		ション	オキシデー ション ディッチ法	"		

表1-1 中川村公共下水道計画(片桐処理区)の概要

		事業計画		計画		
項目		全体計画	既計画	<u> </u>	備考	
処理区名		片桐処理区	片桐処理区	片桐処理区		
	 漂年次		令和12年	令和7年	令和12年	
	除方法		分流式	分流式	同左	
計画区	域(ha)		105	105]]	
計画処理	人口 (人	.)	2, 300	2, 300	11	
家庭汚水	量	日平均	270	270	11	基礎家庭と営業を 含めた給水実績に
原単価(1/人	• 日)	日最大	320	320	"	基づき設定。経年
(営業を含	む)	時間最大	640	640	11	変化は無いものとする。
地下水量原単	5位(1/人	• 目)	64	64	II	1人1日最大家庭汚水量の20%、時間変動無し。
		家庭	621	621	IJ	
	日平均	工場	_		IJ	
	日平均	地下水	147	147	11	
		計	768	768	IJ	
	日最大	家庭	736	736	IJ	
計画汚水量		工場	_	-	11	
(m3/日)		地下水	147	147	IJ	
		計	883	883	11	
		家庭	1, 472	1, 472	11	
	時間最大	工場	_	_	11	
	时间取入	地下水	147	147	11	
		計	1, 619	1, 619	11	
次無点世目	家庭	BOD	49	49	11	1 仕当まれませると
汚濁負荷量 原単位	分 庭	SS	39	39	11	上位計画に基づき 設定。経年変化は
/パー歴 (g/人・日)	工場	BOD	_	_	11	無いものとする。
	1.400	SS	_	_	11	
	家庭	BOD	112	112	"	
	分 庭	SS	89	89	11	
汚濁負荷量	工場	BOD	_	_	11	
(Kg/目)	1.4///	SS	_	_	"	
	計	BOD	112	112	"	
	μΙ	SS	89	89	"	
流入水質 BOD		150	150	11		
(mg/1) SS		120	120	11		
放	放流先			農業用排水路	"	
処理方法		ション	オキシデー ション ディンチン	"		
			ディッチ法	ディッチ法		

2. 予定処理区域およびその周辺の地形および土地利用の状況

2-1. 地形および土地の利用状況

中川村は上伊那郡の最南端に位置し、屈曲蛇行して南流する天竜川により二分されている。大草処理区はこの天竜川の東に位置し、大嶺山の裾野の台地上にあるため天竜川へ注ぐ中小河川は谷間が深く集落間を分断している。片桐処理区は天竜川の西側に位置し、天竜川へ注ぐ中小河川が集落間を分断している。

本村の全体面積が77.05㎞のうち約80%が山林、田畑で占められている。

2-2. 下水の排除方式および決定の理由

本村の公共下水道は、単独公共下水道として事業を行うこととし、排除方式は分流式を 採用する。

また、本村の場合、雨水による浸水災害が少なく現況の排水施設で十分機能していることから、公共用水域の水質汚濁防止の観点に立ち、汚水の整備を優先的に行う。

2-3. 予定処理区域およびその決定の理由

全体計画区域が現況の居住地を中心とした、大草処理区57ha、片桐処理区105haで、事業計画区域は全域の162haとし、処理場周辺から順次整備することとする。

表2-1に大草、片桐処理区の全体計画及び事業計画面積を示す。

表 2-1 下水道計画面積

【単位: ha】

項	Ħ	全体計画		
· · · · · · · · · · · · · · · · · · ·	Ħ	(=事業計画)		
	用途地域	40.0		
大草処理区	用途地域外	17.0		
	目 (=事 用途地域外 合計 用途地域外 日途地域外	5 7. 0		
	用途地域	5 2. 0		
片桐処理区	用途地域外	53.0		
	合計	105.0		

2-4. 管渠および処理施設の位置決定の理由

汚水管渠の配置は、自然流下により効率的に下水排除が可能となるように地形条件を考慮するとともに、道路幅員、地下埋設物の諸条件を勘案し決定した。

処理場の位置については次のことを考慮し決定した。

- 1) 地形上汚水の流集に有利な位置であること。
- 2) 計画汚水量に対し、十分な面積が確保できること。
- 3) 処理水の放流先に近いこと
- 4) 処理区域に近い位置であること。
- 5) 放流先の利水計画と調和が図れること。
- 6) 周辺住民の同意が得られること。

3. 計画下水量およびその算出の根拠

3-1. 人口および人口密度並びにこれらの推定の根拠

本村の行政人口は昭和30年代には8,000人を数えていたが、近年は5,000人を割り込み減少傾向にある。

第6次中川村総合計画では、今後、子育で支援や若者が定住しやすい環境づくり、高齢者や障がい者が安心して暮らせる村づくりを進めるとともに、村の魅力を活かした、農・商・工の連携による内発的・持続的発展により若者が夢を持てる高い付加価値を実現し、元気な経営体が育つ村づくりを進めていくこととしており、行政人口の増加は見込まれないものの、急激な人口減少を抑制するための施策を実施していくとしていることから、その効果を考慮して、目標年次(令和12年)及び中間年度の行政人口は表3-1に示すとおり、村総合計画に示されている人口を採用した。下水道計画人口は整備が完了していることから、表3-2に示すとおり、全体計画=事業計画としている。

表3-1 行政人口の推移

【単位:人】

項	目	平成22年	平成27年	令和2年	令和7年	令和12年
行政	人口	5, 400	5, 200	5, 200	4, 400	4, 300

表 3-2 下水道計画人口(全体計画=事業計画)

【単位:人】

項	目	平成22年	平成27年	令和2年	令和7年	令和12年
大草	用途地域	803	803	803	803	803
八早 処理区	用途地域外	3 9 7	3 9 7	3 9 7	3 9 7	3 9 7
处垤区	計	1, 200	1, 200	1, 200	1, 200	1, 200
片桐	用途地域	1, 188	1, 188	1, 188	1, 188	1, 188
り が か が か か か か か 理 区	用途地域外	1, 112	1, 112	1, 112	1, 112	1, 112
处理区	計	2, 300	2, 300	2, 300	2, 300	2, 300

3-2. 1人1日あたりの汚水量及びその推定の根拠

全体計画では、1人1日あたりの家庭汚水量は、生活汚水と営業汚水を含む上水道給水 実績に基づく推計予測値に、水洗化にともなう使用水量増加分を考慮して採用値を定めて いる。直近10年間の給水実績は横ばい傾向であり、令和6年度末現在で水洗化率が93.4% であることから、今後の使用水量増加要素は少なく、全体計画と大きな差がないことから、 経年変化はないものとする。

表3-3-1 給水及び各処理場への汚水量流入実績

F- VI	給水人口	1日平均給	1人1日平	汚水量流入詞	桟績(千㎡)
年次	(人)	水量 (m³/日)	均給水量 (Q/人・日)	大草処理区	片桐処理区
平成 26 年度	5,029	1,185	2 3 5	94.6	150.1
平成 27 年度	4,964	1,170	2 3 5	90.9	152.9
平成 28 年度	4,894	1,167	2 3 8	89.1	155.1
平成 29 年度	4,880	1,197	2 4 5	88.1	158.4
平成 30 年度	4,841	1,217	2 5 1	89.2	159.1
令和元年度	4,788	1,206	2 5 1	88.6	156.8
令和2年度	4,736	1,221	2 5 7	87.1	160.2
令和3年度	4,681	1,223	261	88.3	158.3
令和4年度	4,629	1,223	264	84.3	156.1
令和5年度	4,583	1,183	2 5 8	87.9	154.7
令和6年度	4,544	1,199	263	91.1	155.9

表3-3-2 1人1日あたりの家庭汚水量(全体計画)

【単位:L/人・日】

		1 1 1 •	
	日平均	日最大	時間最大
1人1日あたり			
家庭汚水量	270	3 2 0	6 4 0
(営業含む)			

時間稼働率は、日平均:日最大:時間最大=0.8:1.0:2.0

3-3. 家庭排水、工場排水、地下水等の量及びこれらの推定の根拠

1) 家庭汚水量

家庭汚水量は、1人1日当たりの家庭汚水量原単価に計画人口を乗じて求める。 大草、片桐処理区における全体計画及び事業計画の家庭汚水量は、表3-4のよう になる。

表3-4 家庭汚水量

【単位: m³/目】

処理区名	全体計画=事業計画(令和12年)				
是连 区石	計画人口 (人)	時間変動	家庭汚水量		
大草処理区	1, 200	日平均	3 2 4		
	1, 200	日最大	3 8 4		

		時間最大	7 6 8
		日平均	6 2 1
片桐処理区	2, 300	日最大	7 3 6
		時間最大	1, 472

2) 工場排水量

工場排水は、大草処理区に工場が2社あり、各々に対し聞き取り調査を行い、現 況排水量を把握して将来値とした。工場排水の時間変動率は、日平均:日最大:時 間最大を1:1:2とした。尚、片桐処理区には排水量を見込むべき工場は立地し ていないことから、本事業計画では工場排水量は見込まないものとする。

3) 地下水量

一般的に地下水量は、1人1日最大家庭汚水量の $20\sim30\%$ を見込むものとしている。本事業計画では、安全性を見込み1人1日最大家庭汚水量の20%を採用値とする。

4) 計画汚水量

大草、片桐処理区の計画汚水量を表3-5に示す。

表3-5 計画汚水量

【単位: m³/日】

加细区友	巨八	全体計画=事業計画				
処理区名	区分	日平均	日最大	時間最大		
	家庭	3 2 4	3 8 4	7 6 8		
大草処理区	工場	5	5	1 0		
八早处连区	地下水	7 7	7 7	7 7		
	計	4 0 6	4 6 6	8 5 5		
	家庭	6 2 1	7 3 6	1, 472		
上 担 加 知 立	工場					
片桐処理区 	地下水	1 4 7	1 4 7	1 4 7		
	計	7 6 8	883	1, 619		

3-4. 主要な管渠の流量計算

1) 管渠の流量計算は次式のマニング公式を採用した。

$$Q = A \cdot V$$

$$V = 1 / n \cdot R^{2/3} \cdot I^{1/2}$$

Q:流量(m³/sec)

A:流水面積(㎡)

V:流速 (m/sec)

n:粗度係数(塩ビ管 n=0.010、ヒューム管 n=0.013)

R:径深[A/P](m)

P:流水の潤辺長 (m)

I : 勾配

- 2) 流速は $0.6\sim3.0$ m/sec とする。管渠の最小管径は200 mmとし、下流に向かって大きくし、勾配は下流に向かって小さくする。
- 3) 最小土被りは1.2 mとする。但し、国道、河川横断については、関係機関との協議の上決定する。
- 4) 管渠の流下能力算定は、管径200~600mmの管渠において、流量に対して100%の断面の余裕を確保する。
- 5) 汚水流量計算は別冊計算書のとおり。

4. 公共下水道からの放流水及び処理施設において処理すべき下水の予定水質 並びにその推定の根拠

4-1. 一般家庭下水の予定水質、汚濁負荷量及びその推定の根拠

全体計画では、汚濁負荷量は、目標年次(令和 12 年)の1人1日あたりの家庭汚 濁量負荷量原単位の採用値に下水道計画人口を乗じて算定している。

本事業計画において汚濁負荷量原単位は、流総計画を参考に家庭汚水の水質が将来大きく変化しないものと考え、全体計画値を採用した。

表4-1に汚濁負荷量原単位及び全体計画、事業計画における家庭汚水の汚濁負荷量及び予定水質をそれぞれ示す。

		全体計画 (=事業計画)					
処理区	項目	汚濁負荷量原単位	日平均汚水量	汚濁負荷量	予定水質		
		(g/人・日)	(m³/日)	(Kg/日)	(mg/Q)		
十世加理区	BOD	48.5	3 2 4	5 8	180		
大草処理区	SS	38.8	3 2 4	4 7	1 5 0		
片桐処理区	BOD	48.5	6 2 1	1 1 2	180		
	SS	38.8	021	8 9	1 4 0		

表4-1 家庭汚水の水質及び負荷量

4-2. 工場排水の予定水質及び汚濁負荷量、その推定の根拠、並びに工場排水と 一般家庭下水との合併処理に関する検討

1) 工場排水の予定水質及び汚濁負荷量

工場排水は大草処理区域内に2工場あり、実態調査より工場排水の水質を「流総指針」の中に提出されている環境庁資料(現環境省)から推定した。尚、片桐処理区については、工場排水量は見込んでいない。

工場排水の水質及び汚濁負荷量表4-2に示すとおりである。

	排水水質 (mg/l)		工場排水量	汚濁負荷量	赴(kg/日)
	BOD	SS	(m³/日)	ВОД	SS
漬物排水	6 0 0	200	4	2. 4	0.8
洗びん排水	5 0 0	2 5 0	1	0. 5	0.3
計	_	_	5	2. 9	1. 1

表4-2 工場排水の水質及び汚濁負荷量

2)総合水質

総合水質は、表4-3に示すとおりである。尚、地下水の汚濁負荷量は0とする。

表4-3 総合水質

処理区	項目	流入	負荷量(kg/	汚水量	水質	
处理区	サロ サロ	家 庭	工場	計	(m³/日)	(mg/Q)
大草処理区	BOD	58.2	2. 9	61.1	406	1 5 0
八早处理区	SS	46.6	1. 1	47.7	400	1 1 7
片桐処理区	BOD	1 1 2. 0	_	1 1 2. 0	768	1 5 0
7 們处理区	SS	89.0	_	89.0	108	1 2 0

4-3. 除外施設設置基準及びその決定の理由

工場排水の水質濃度(BOD、SS等)が、一般家庭下水濃度に比べ相当高い場合、下水道施設に及ぼす影響として、管渠の腐食、有毒ガスの発生、沈殿物の増加とそれに伴う処理能力の低下や汚濁処理施設を過負荷にする等の悪影響が生じる可能性がある。よって下水道法における除害施設の設置に関する条例の基準に示された範囲内で除害施設の設置を義務付けるものとする。

4-4. 処理の対象外とする工場と対象外とする理由

本事業計画区域内には処理の対象外とする工場はない。

4-5. 処理方法並びに各処理施設における計画汚濁負荷量及びその決定の理由

長野県では、天竜川水域について水質汚濁防止法第3条第3項に基づき、新規に処理場を設ける場合は、排水規制をBOD20mg/Q以下、SS70mg/Q以下(ともに日平均値)と定めている。

この規制値は、水域全域に適用されることから、片桐浄化センターの処理水質は、排水規制の制限を受けることになる。

処理方式を決定するにあたり、以上のことを考慮し、オキシデーションディッチ法、長時間曝気法、標準活性汚泥法で処理能力、維持管理、経済性について比較検討を行った。本村の人口変動が大きくなく水量が大きく変動しないこと、維持管理が容易であり、安価であること等の理由から、処理方法はプレハブディッチによるオキシデーションディッチ法を採用した。

4-6. 処理施設の容量計算

別添「処理場の容量計算」に示すとおり。

5. 下水の放流先の状況

5-1. 基本的な考え方

大草、片桐浄化センターの計画放流水質検討について、放流先の水利用において窒素・リンに係る特別の支障がないことを確認の上、水域が河川であることより水質検討項目はBODとする。

科学的な方法は、現況の天竜川に大草浄化センターから全体計画及び事業計画時の汚濁 負荷量が流入した場合に、下流の環境基準点で基準値以下となるよう計画放流水質を設定 する。尚、片桐浄化センターの直接の放流先に当たる農業用排水路は、環境基準の類型指 定はなされていない。

5-2. 放流先の目標水質の検討

水質検討項目は、河川の環境基準項目である BOD とし、放流先にあたる天竜川・宮ヶ瀬橋の現況水質および環境基準の類型を表 5-1 に示す。

表5-1 環境基準点での水質

[BOD:mg/L]

_						- 0 -
	河川名	環境基準点	最小~最大	平均值	75%値	類型
	天竜川	宮ヶ瀬橋 (松川町)	$0.7 \sim 2.3$	1. 4	1. 6	A(2m/L以下)

(出典:「1998年度版 全国公共用水域水質年鑑」)

5-3. 目標水質の設定

当流域における既存の水質目標は、水質環境基準値(BOD 2mg/L 以下)とする。

5-4. 下水処理による水質向上の見通し

「天竜川流総計画」によれば、下水道整備が公共用水域の水質向上に寄与する効果は、最寄りの環境基準点である天竜川・宮ヶ瀬橋地点で表5-2で示すようになっており、下水道整備が公共用水域の汚濁進行を防止し、環境基準の達成・維持に大きな役割を果たすことがわかる。また、表5-3に大草浄化センターにおける下水道整備による汚濁解析モデルを示す。

表5-2 水質向上の見通し

【単位:BOD (mg/l)】

区分	環境基準	現況	将来(令和	12年)
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	垛児至毕	(平成3年)	下水道未整備	下水道整備
天竜川・宮ヶ瀬橋	2. 0	1. 9	2. 3	1. 5

5-5. 下水道整備による現況及び事業計画の汚泥解析モデル

1) 汚泥解析モデル

汚泥解析モデルにおいて、大草浄化センターは平成17年度の処理場放流実績平均値を、その他は表5-1より下流の環境基準点における天竜川のBOD平均水質1.4mg/L、低水流量40.4m³/s(流総計画値)とする。

表5-3 大草浄化センターにおける下水道整備による汚濁解析モデル

≪現況≫

放流水量	放流水質	日平均			上流か	らの流入	
(m³/日)	(mg/l)	, ,	低水流量	水質	総負荷量	浄化センター以外	浄化センター
(1117 🖂)	(1118/1)	(kg/目)	(m^3/s)	(mg/l)	(kg/目)	(kg/日)	(kg/日)
240	3.3	0.79	40.4	1.50	5,235.8	5,235.0	0.8

≪全体計画における計画放流水質≫

放流水量	放流水質	日平均			上流か	らの流入	
が流水里 (m³/日)	(mg/l)	(kg/目)	低水流量	水質	総負荷量	浄化センター以外	浄化センター
(1117 🖂)	(IIIg/1)	(Kg/ 🖂)	(m^3/s)	(mg/l)	(kg/目)	(㎏/日)	(kg/目)
466	15.0	7.0	40.4	1.50	5,242.0	5,235.0	7.0

2)全体計画(事業計画)における計画放流水質の決定 環境基準点でのBOD計画値は以下のとおり1.50 mg/L で基準以下となるため、

計画放流水質は、BOD15 mg/L とする。

 $(5.235.0+7.0) / (40.4\times24\times60\times60) \times1.000 = 1.50 \text{ mg/L}$

5-6. 法令による規制等の確認

下水道法施行規則で定められた計画放流水質の上限値(BOD15mg/L)を満足している。また、水質汚濁防止法に基づく排水基準値(BOD20mg/L)も満足している。

5-7. 流総計画との整合性

流総計画は、当該下水処理場の処理方法を、「標準活性汚泥法又は同等の処理能力を有する処理方法」としており、計画放流水質は流総計画と整合していることを確認した。

5-8. 事業計画における計画放流水質の決定

本事業計画は、想定される放流先の目標水質(天竜川BOD3mg/L以下)を図5-3の汚濁解析の結果より守ることができる。よって、事業計画における計画放流水質は、既事業計画処理施設(オキシデーションディッチ法)で処理可能なBOD15mg/Lとする。

6. 毎会計年度の工事費の予定額及びその予定財源

イ. 経費の部

(単位:千円)

									<u> </u>
	イ. 経費の部								
年 次	建	設	改	良	費	起債元利	維持管理費	その他	合計
	管渠	ポンプ場	処理場	計	うち用地費	償還費	維付官理賞	ての他	行行
過年度 (令和7年度まで)	4, 100, 750	0	939, 337	5, 040, 087	22, 725	3, 974, 835	1, 238, 746	0	10, 253, 668
令和8年度	50,000	0	0	50, 000	0	103, 322	45, 000	0	198, 322
令和9年度	50,000	0	0	50, 000	0	82, 470	45, 000	0	177, 470
令和10年度	5,000	0	0	5, 000	0	77, 342	45, 000	0	127, 342
令和11年度	5,000	0	0	5, 000	0	61, 356	45, 000	0	111, 356
令和12年度	5,000	0	0	5, 000	0	47, 317	45, 000	0	97, 317
小 計 (令和8年度~令和12年度)	115, 000	0	0	115, 000	0	371, 807	225, 000	0	711, 807
合 計	4, 215, 750	0	939, 337	5, 155, 087	22, 725	4, 346, 642	1, 463, 746	0	10, 965, 475

ロ. 財源の部

									1)	単位:千円)
ロ. 財源の部										
	建	設 改	良	費		維持管	理 費 及	び起債	償 還 額	
国 費	起費	他会計 繰入金	受益者 負担金	その他	計	下水道 使用料	他会計 繰入金	その他	計	合計
1, 561, 932	3, 033, 160	189, 051	247, 752	0	5, 031, 895	1, 524, 590	3, 697, 183	0	5, 221, 773	10, 253, 668
0	40, 000	10, 000	0	0	50, 000	62, 000	86, 322	0	148, 322	198, 322
0	40,000	10,000	0	0	50, 000	62, 000	65, 470	0	127, 470	177, 470
0	5, 000	0	0	0	5, 000	62, 000	60, 342	0	122, 342	127, 342
0	5, 000	0	0	0	5, 000	62, 000	44, 356	0	106, 356	111, 356
	5, 000	0	0	0	5, 000	62, 000	30, 317	0	92, 317	97, 317
0	95, 000	20, 000	0	0	115, 000	310, 000	286, 807	0	596, 807	711, 807
1, 561, 932	3, 128, 160	209, 051	247, 752	0	5, 146, 895	1, 834, 590	3, 983, 990	0	5, 818, 580	10, 965, 475
接続率	93.5% (令和7年度	: 初年度)	→ 97.1%	(令和12年月	E:最終年月	度)			
	講じる対策	:接続意向	調査並びに	広報を実施	近し、接続要	要請を積極的	りに行う。			
有収率	99.9% (令和7年度	: 初年度)	→ 99.9%	(令和12年月	度:最終年月	度)			
'	 講じる対策	: 適切な管	理を進め、	有収率の維	 i持に努める	·) 。	***************************************	•••••		
その他講	 じる対策									
 下水道 	使用料の適	i正化に対す	る検討等							
	1,561,932 0 0 0 0 0 1,561,932 接続率 有収率	建 国 費 起 費 1,561,932 3,033,160 0 40,000 0 40,000 0 5,000 0 5,000 0 5,000 1,561,932 3,128,160 接続率 93.5% (を 講じる対策 その他講じる対策	建 設 3 国費 起費 他会計繰入金 1,561,932 3,033,160 189,051 0 40,000 10,000 0 40,000 10,000 0 5,000 0 0 5,000 0 0 5,000 0 0 95,000 20,000 1,561,932 3,128,160 209,051 接続率 93.5%(令和7年度 講じる対策:接続意向 有収率 99.9%(令和7年度 講じる対策:適切な管 その他講じる対策	建 設 改 良 国費 起費 他会計 繰入金 受益者 負担金 1,561,932 3,033,160 189,051 247,752 0 40,000 10,000 0 0 40,000 10,000 0 0 5,000 0 0 0 5,000 0 0 0 5,000 0 0 0 95,000 20,000 0 1,561,932 3,128,160 209,051 247,752 接続率 93.5% (令和7年度:初年度) 講じる対策:接続意向調査並びに 請じる対策:適切な管理を進め、	建 設 改 良 費 国 費 起 費 他会計	建 設 改 良 費 国 費 起 費 他会計	建 設 改 良 費 維持質 国 費 起 費 他会計	理 設 改 良 費 維持管理費及 1,561,932 3,033,160 189,051 247,752 0 5,031,895 1,524,590 3,697,183 0 40,000 10,000 0 0 50,000 62,000 86,322 0 40,000 10,000 0 0 50,000 62,000 65,470 0 5,000 0 0 0 0 5,000 62,000 65,470 0 5,000 0 0 0 0 5,000 62,000 63,470 0 5,000 0 0 0 0 5,000 62,000 44,356 5,000 0 0 0 0 5,000 62,000 30,317 0 95,000 20,000 0 0 0 115,000 310,000 286,807 1,561,932 3,128,160 209,051 247,752 0 5,146,895 1,834,590 3,983,990 接続率 93.5% (令和7年度:初年度) → 97.1% (令和12年度:最終年度) 講じる対策:接続意向調査並びに広報を実施し、接続要請を積極的に行う。 有収率 99.9% (令和7年度:初年度) → 99.9% (令和12年度:最終年度) 講じる対策:適切な管理を進め、有収率の維持に努める。 その他講じる対策	複 設 改 良 費 維持管理費及び起債 国費 起費 他会計 操入金 長担金 その他 計 下水道 使用料 繰入金 その他 計 下水道 使用料 繰入金 その他 1,561,932 3,033,160 189,051 247,752 0 5,031,895 1,524,590 3,697,183 0 0 40,000 10,000 0 0 50,000 62,000 86,322 0 0 0 0 0 0 0 0 0	□ 財源の部 連

7. その他の書類

7-1. 施設の設置に関する方針(様式1)

				整備水準			事業の	中期目標		
主要な施策	指標等			現在 (令和 6 年度末)	中期目標 (令和12 年度末)	長期目標	重点化・ 効率化 の方針	を達成す るための 主要な 事業	備	考
	下水道処理人口普及率		56.9%	56.9%	56.9%	下水道計 画区域内 整備済				
	管路加		緊急度 I の 延長	0 km	0 km	0 km				
汚水処理	管路が(マン	直設 /ホール	緊急度 I の ・) マンホール の箇所数	0箇所	0 箇所	0 箇所				
	下水处	卫 理場	「中分類 相当」の健 全度2以下 の施設数	0 施設	0 施設	0 施設				
耐水化	本書時における機能確保	処理場	沈澱機能が確 保された水処 理系列数:1	0 %	0 %	100%	具体的 な方針 は今後 検討を 行う			
耐震化	災害時		主要な管渠	0 %	0 %	100%	具体的 な 方 後			
1103 /ZR [L	保率	X4. 月丘 꾸压	下水処理場	100%	100%	100%	検討を行う			
汚泥の 再生利用	燃料又は肥料として有効利用 された割合		100%	100%	100%					

7-2. 施設の機能の維持に関する方針(様式2)

a) 主要な施設に係る主な措置

i) 劣化・損傷を把握するための点検・調査の計画

	T
主要な施設	点検・調査の頻度
	主要な管路施設のうち、腐食のおそれの大きい個所の管渠、マンホール
管渠施設	(ふたを含む)を対象に、5年に一度、点検を実施。また、10年に一度、
日米地区	もしくは、点検で異状が確認された場合、テレビカメラ等による調査を
	実施。
	1年に一度、設備調査を実施。
水処理施設	設備調査の結果、異状またはその兆候が確認された場合、分解調査を実
(送風機本体)	施。
	また、設備調査の結果に関わらず、概ね7年に一度、分解調査を実施。
	1年に一度、設備調査を実施。
汚泥処理施設	設備調査の結果、異状またはその兆候が確認された場合、分解調査を実
(汚泥脱水機)	施。
	また、設備調査の結果に関わらず、概ね7年に一度、分解調査を実施。

ii)診断結果を踏まえた修繕・改築の判断基準

主要な施設	修繕・改築の判断基準
管渠施設	緊急度 I またはⅡに該当する施設を修繕・改築対象とする。
水処理施設	健全度2以下に該当する設備を修繕・改築対象とする。
(送風機本体)	
汚泥処理施設	健全度2以下に該当する設備を修繕・改築対象とする。
(汚泥脱水機)	

iii) 改築事業の概要 (令和7年度~令和12年度)

主要な施設	改築事業の概要
管渠施設	該当なし
水処理施設 (送風機本体)	該当なし
汚泥処理施設 (汚泥脱水機)	該当なし

※今後、ストックマネジメント計画を策定予定

b)施設の長期的な改築の需要見通し

改築の需要見通し (年当たりの概ねの事業規模 の試算)	試算の対象時期	試算の前提条件
年当たり概ね51百万円	概ね100年後	管路施設の目標耐用年数を 75 年に設定。 処理施設の土木・建築構造物の目標耐用年数を 75 年に設定。 処理施設の機械・電気設備の目標耐用年数を 25 年に設定。

7-3. 汚泥の最終処分計画及び処分地

大草及び片桐浄化センターで発生する汚泥は、場内で移動脱水車により脱水の後、脱水ケーキで場外へ搬出する。

7-4. 下水道条例

中川村公共下水道条例

目次

- 第1章 総則(第1条—第4条)
- 第2章 排水設備の設置等(第5条―第7条)
- 第3章 排水設備等の工事の事業に係る指定等(第8条―第9条)
- 第4章 公共下水道の使用(第10条-第16条)
- 第5章 使用料等(第17条-第23条の2)
- 第6章 雑則(第24条—第28条)
- 第7章 罰則(第29条・第30条)
- 第8章 補則(第31条)

附則

第1章 総則

(趣旨)

第1条 この条例は、地方自治法(昭和22年法律第67号)第244条の2第1項の規定により、下水道法(昭和33年法律第79号。以下「法」という。)及びその他の法令で定めるもののほか、中川村公共下水道(以下「公共下水道」という。)の設置及び管理に関し、必要な事項を定めるものとする。

(用語の意義)

- 第2条 この条例において次の各号に掲げる用語の意義は、それぞれ当該各号に定めるところ による。
 - (1) 下水及び汚水 それぞれ法第2第1号に規定する下水及び汚水をいう。
 - (2) 公共下水道 法第2条第3号に規定する公共下水道をいう。
 - (3) 終末処理場 法第2条第6号に規定する終末処理場をいう。
 - (4) 排水設備 法第10条第1項に規定する排水設備をいう。
 - (5) 特定施設 法第11条の2第2項に規定する特定施設をいう。
 - (6) 除害施設 法第12条第1項に規定する除害施設をいう。
 - (7) 特定事業場 法第12条の2第1項に規定する特定事業場をいう。
 - (8) 使用者 下水を公共下水道に排除してこれを使用する者をいう。
 - (9) 公共ます 排水設備と取付管 (排水設備から公共下水道の本管に接続するための排水管 をいう。) を接続するための、公衆用道路に近い民地内に設置するますをいう。
 - (10)使用月 下水道使用料徴収の便宜上区分された期間をいい、その始期及び終期は、規程で定める。

(設置)

第3条 都市の健全な発達及び公衆衛生の向上に寄与し、あわせて公共用水域の水質の保全を 図るため、公共下水道を設置する。

(名称及び区域)

- 第4条 公共下水道の名称は、中川村公共下水道とする。
- 2 公共下水道の下水を排除すべき区域及び下水を処理すべき区域は、法第9条の規定により、管理者の権限を行う村長(以下「管理者」という。)が公示した区域とする。

第2章 排水設備の設置等

(排水設備の設置)

第5条 公共下水道の供用開始の日において排水設備を設置すべき者は、当該日から3年以内 に当該排水設備を設置しなければならない。

(排水設備の接続方法及び内径等)

- 第6条 排水設備の新設、増設又は改築(以下「新設等」という。)を行おうとするときは、 次に定めるところによらなければならない。
 - (1) 公共下水道に汚水を流入させるために設ける排水設備は、公共ますその他の排水施又は他の排水設備(以下「公共ます等」という。) に固着させること。
 - (2) 排水設備を公共ます等に固着させるときは、公共下水道の施設の機能を妨げ、又はその施設を損傷するおそれのない箇所及び工事の実施方法で規程の定めるものによること。
 - (3) 汚水を排除すべき排水管の内径及び勾配は、管理者が特別の理由があると認めた場合を除き、次表に定めるところによるものとし、排水渠の断面積は、同表の左欄の区分に応じそれぞれ同表の中欄に掲げる内径の排水管と同程度以上の流下能力のあるものとすること。ただし、一の建築物から排除される汚水の一部を排除すべき排水管で延長が3メートル以下のものの内径は75ミリメートル以上とすることができる。

排水人口 (単位:人)	排水管の内径 (単位:ミリメートル)	勾配
150未満	100以上	100分の2以上
150以上300未満	125以上	100分の1.7以上
300以上500未満	150以上	100分の1.5以上
500以上	200以上	100分の1.2以上

(4) 前各号に定めるもののほか排水設備の設置及び構造の基準は、規程に定めるところによる。

(排水設備等の計画の確認)

- 第7条 排水設備又は法第24条第1項の規定によりその設置について許可を受けるべき排水施設(以下これらを「排水設備等」という。)の新設等を行おうとする者は、あらかじめ、その計画が排水設備等の設置及び構造に関する法令の規定に適合するものであることについて、規程で定めるところにより、申請書に必要な書類を添付して提出し、管理者の確認を受けなければならない。
- 2 前項の申請者は、同項の申請書及びこれに添付した書類に記載した事項を変更しようとするときは、あらかじめ、その変更について書面により届け出て、同項の規定による管理者の確認を受けなければならない。ただし、排水設備等の構造に影響を及ぼすおそれのない変更にあっては、その旨を管理者に届け出ることをもって足りる。

第3章 排水設備等の工事の事業に係る指定等

(排水設備指定工事店の指定)

第8条 排水設備等の新設等の工事(以下「排水設備工事」という。)は、次の各号に掲げる 工事を除き、管理者の指定を受けた者(以下「指定工事店」という。)でなければ、行って はならない。

- (1) 規程で定める軽微な工事
- (2) 災害その他非常の場合において、管理者が他の市町村長の指定を受けた者に工事を行わせる必要があると認めるときに、他の市町村長の指定を受けた者が行う工事
- 2 前項の指定の有効期間は、指定工事店としての指定を受けた日から5年とする。
- 3 前項の有効期間満了に際し、引き続き指定工事店としての指定を受けようとするときは、 指定の更新を受けなければならない。

(指定の申請)

- 第8条の2 前条第1項の指定は、排水設備工事の事業を行う者の申請により行うものとする。
- 2 前条第1項の指定を受けようとする者は、次に掲げる事項を記載した申請書を管理者に提出しなければならない。
 - (1) 氏名又は名称及び住所並びに法人にあっては、その代表者の氏名
 - (2) 排水設備工事の事業を行う営業所(以下「営業所」という。) の名称及び所在地並び に第8条の4第1項の規定によりそれぞれの営業所において選任することとなる排水設備工事責任技術者(以下「責任技術者」という。) の氏名並びに他の営業所責任技術者 を兼任している場合はその兼務状況
- 3 前項の申請書には次に掲げる書類を添えなければならない。
 - (1) 次条第1項第4号アからオまでのいずれにも該当しない者であることを誓約する書類
 - (2) 法人にあっては、定款又は寄附行為及び登記事項証明書、個人にあってはその住民票、在留カード(出入国管理及び難民認定法(昭和26年政令第319号)第19条の3に規定する在留カードをいう。)又は特別永住者証明書(日本国との平和条約に基づき日本の国籍を離脱した者等の出入国に関する特例法(平成3年法律第71号)第7条第1項に規定する特別永住者証明書をいう。)の写し
 - (3) 営業所の平面図及び写真並びに付近見取図
 - (4) 選任することとなる責任技術者に係る財団法人長野県下水道公社(以下「公社」という。)の規定により交付された責任技術者証の写し
 - (5) 次条第1項第2号で定める機械器具を有することを証する書類 (指定の基準)
- 第8条の3 管理者は、第8条第1項の指定の申請をした者が次の各号のいずれにも適合していると認めるときは、同項の指定を行うものとする。
 - (1) 営業所ごとに、次条第1項の規定により責任技術者として登録を受けた者を選任していること。
 - (2) 別に定める機械器具を有していること。
 - (3) 長野県内に営業所があること。
 - (4) 次のいずれにも該当しない者であること。
 - ア 破産手続開始の決定を受けて復権を得ない者
 - イ 第8条の10第1項の規定により指定を取り消され、その取消しの日から2年を経過しない者
 - ウ その業務に関し不正又は不誠実な行為をするおそれがあると認めるに足りる相当の 理由がある者

- エ 精神の機能の障害により排水設備等の新設等の工事の事業を適正に営むに当たって 必要な認知、判断及び意思疎通を適切に行うことができない者
- オ 法人であって、その役員のうちにアからエまでのいずれかに該当する者があるもの
- 2 管理者は、第8条第1項の指定をしたときは、遅滞なく、その旨を一般に周知させる措置 をとるものとする。

(責任技術者)

- 第8条の4 指定工事店は、営業所ごとに、次項各号に掲げる職務をさせるため、公社の規定 する責任技術者の登録を受けている者のうちから、責任技術者を選任しなければならない。 ただし、同一の都道府県の区域内における他の営業所について兼任することを妨げない。
- 2 責任技術者は、次に掲げる職務を誠実に行わなければならない。
 - (1) 排水設備工事に関する技術上の管理
 - (2) 排水設備工事に従事する者の技術上の指導監督
 - (3) 排水設備工事が排水設備等の設置及び構造に関する法令の規定に適合していることの 確認
 - (4) 第9条に規定する検査の立ち会い
- 3 排水設備工事に従事する者は、責任技術者がその職務として行う指導に従わなければならない。

(責任技術者の登録)

- 第8条の5 公社は、前条第1項において定める責任技術者についての登録を行うものとする。
- 2 前項の登録の有効期間は、公社が定めるものとする。ただし、次条に定める責任技術者認 定試験に合格したことを証する書類に記載された有効期間の範囲内とする。
- 3 前項の有効期間満了に際し、引き続き登録を受けようとするときは、登録の更新を受けなければならない。

(責任技術者認定試験)

第8条の6 責任技術者認定試験は、責任技術者として必要な知識及び技能について、公社が 行うものとする。

(指定工事店証)

- 第8条の7 管理者は、指定工事店として指定を行った排水設備工事の事業を行う者に対し、 排水設備指定工事店証(以下「指定工事店証」という。)を交付する。
- 2 指定工事店は、指定工事店証を営業所内の見やすい場所に掲げなければならない。
- 3 指定工事店は、第8条の10第1項の規定により指定を取り消されたときは、遅滞なく管理者 に指定工事店証を返納しなければならない。同項の規定により指定の効力を一時停止された ときも、同様とする。
- 4 前3項に規定するもののほか、指定工事店証の書換え交付及び再交付に関し必要な事項は、別に定める。

(指定工事店の責務及び遵守事項)

第8条の8 指定工事店は、下水道に関する法令、条例及び規程の定めるところに従い適正な 排水設備工事の施工に努めなければならない。

(変更の届出等)

第8条の9 指定工事店は、営業所の名称及び所在地等に変更があったとき、又は排水設備工

事の事業を廃止し、休止し、若しくは再開したときは、その旨を管理者に届け出なければならない。

(指定の取消し又は一時停止)

- 第8条の10 管理者は、指定工事店が次の各号のいずれかに該当するときは、第8条第1項の 指定を取り消し又は1年を超えない範囲内において指定の効力を停止することができる。
 - (1) 第8条の3第1項各号に適合しなくなったとき。
 - (2) 第8条の4第1項の規定に違反したとき。
 - (3) 第8条の8に規定する指定工事店の責務及び遵守事項に従った適正な排水設備工事の 施工ができないと認められるとき。
 - (4) 前条の規定による届出をせず、又は虚偽の届出をしたとき。
 - (5) その施工する排水設備工事が、下水道施設の機能に障害を与え、又は与えるおそれが大であるとき。
 - (6) 不正の手段により第8条第1項の指定を受けたとき。
- 2 第8条の3第2項の規定は、前項の場合に準用する。

(排水設備等の工事の検査)

第9条 排水設備等の新設等を行った者は、その工事を完了したときは、工事を完了した日から7日以内にその旨を管理者に届け出て、村の職員の検査を受けなければならない。

第4章 公共下水道の使用

(除害施設の設置等)

- 第10条 法第12条第1項の規定により、次に定める基準に適合しない下水を継続して排除して 公共下水道を使用する者は、除害施設を設け、又は必要な措置をしなければならない。
 - (1) 温度 45度未満
 - (2) 水素イオン濃度 水素指数5を超え9未満
 - (3) ノルマルヘキサン抽出物質含有量

ア 鉱油類含有量 1リットルにつき5ミリグラム以下

イ 動植物油脂類含有量 1リットルにつき30ミリグラム以下

(4) 沃素消費量 1リットルにつき220ミリグラム未満

(特定事業場からの汚水の排除の制限)

- 第11条 特定事業場から汚水を排除して、公共下水道を使用する者は、法第12条の2第5項の 規定により、次に定める基準に適合しない水質の汚水を排除してはならない。
 - (1) アンモニア性窒素、亜硝酸性窒素及び硝酸性窒素含有量 1 リットルにつき380ミリグラム未満
 - (2) 水素イオン濃度 水素指数5を超え9未満
 - (3) 生物化学的酸素要求量 1リットルにつき5日間に600ミリグラム未満
 - (4) 浮遊物質量 1リットルにつき600ミリグラム未満
 - (5) ノルマルヘキサン抽出物質含有量

ア 鉱油類含有量 1リットルにつき5ミリグラム以下

- イ 動植物油脂類含有量 1リットルにつき30ミリグラム以下
- (6) 窒素含有量 1リットルにつき240ミリグラム未満
- (7) 燐含有量 1リットルにつき32ミリグラム未満
- 2 特定事業場から排除される下水に係る前項に規定する水質の基準は、次の各号に掲げる場

合においては、同項の規定に関わらず、それぞれ当該各号に規定する緩やかな排水基準とする。

- (1) 前項第1号、第6号又は第7号に掲げる項目に係る水質に関し、当該下水が当該公共下水道からの放流水に係る公共の水域に直接排除されたとした場合においては、水質汚濁防止法(昭和45年法律第138号)の規定による環境省令により、又は同法第3条第3項の規定による条例により、当該各号に定める基準より緩やかな排水基準が適用されるとき。
- (2) 前項第2号から第5号までに掲げる項目に係る水質に関し、当該下水が河川その他の 公共の水域湖沼を除く。) に直接排除されたとした場合においては、水質汚濁防止法の規 定による環境省令により、当該各号に定める基準より緩やかな排水基準が適用されると き。

(除害施設の設置等)

- 第12条 法第12条の11第1項の規定により、次に定める基準に適合しない下水(法第12条の2 第1項又は第5項の規定により公共下水道に排除してはならないこととされるものを除 く。)を継続して排除して公共下水道を使用する者は、除害施設を設け、又は必要な措置を しなければならない。
 - (1) カドミウム及びその化合物 1リットルにつきカドミウム0.03ミリグラム以下
 - (2) シアン化合物 1リットルにつきシアン1ミリグラム以下
 - (3) 有機燐化合物 1リットルにつき1ミリグラム以下
 - (4) 鉛及びその化合物 1リットルにつき鉛0.1ミリグラム以下
 - (5) 六価クロム化合物 1リットルにつき六価クロム0.2ミリグラム以下
 - (6) 砒素及びその化合物 1リットルにつき砒素0.1ミリグラム以下
 - (7) 水銀及びアルキル水銀その他の水銀化合物 1 リットルにつき水銀0.005ミリグラム以下
 - (8) アルキル水銀化合物 検出されないこと。
 - (9) ポリ塩化ビフェニル 1リットルにつき0.003ミリグラム以下
 - (10) トリクロロエチレン 1 リットルにつき0.1ミリグラム以下
 - (11)テトラクロロエチレン 1リットルにつき0.1ミリグラム以下
 - (12) ジクロロメタン 1リットルにつき0.2ミリグラム以下
 - (13) 四塩化炭素 1 リットルにつき0.02ミリグラム以下
 - (14)1・2ジクロロエタン 1リットルにつき0.04ミリグラム以下
 - (15)1・1ジクロロエチレン 1リットルにつき1ミリグラム以下
 - (16)シス1・2ジクロロエチレン 1リットルにつき0.4ミリグラム以下
 - (17)1・1・1トリクロロエタン 1リットルにつき3ミリグラム以下
 - (18)1・1・2トリクロロエタン 1リットルにつき0.06ミリグラム以下
 - (19)1・3ジクロロプロペン 1リットルにつき0.02ミリグラム以下
 - (20) テトラメチルチウラムジスルフィド(別名チウラム) 1 リットルにつき0.06ミリグラム以下
 - (21) 2クロロ4・6ビス(エチルアミノ)—s—トリアジン(別名シマジン) 1 リットルにつき 0.03ミリグラム以下
 - (22) S—4クロロベンジル=N・Nジエチルチオカルバマート(別名チオベンカルブ) 1リットルにつき0.2ミリグラム以下

- (23) ベンゼン 1 リットルにつき0.1ミリグラム以下
- (24) セレン及びその化合物 1 リットルにつきセレン0.1ミリグラム以下
- (25) ほう素及びその化合物 1 リットルにつきほう素10ミリグラム以下
- (26)ふっ素及びその化合物 1リットルにつきふっ素8ミリグラム以下
- (27)1・4-ジオキサン 1リットルにつき0.5ミリグラム以下
- (28) フェノール類 1 リットルにつき 5 ミリグラム以下
- (29)銅及びその化合物 1リットルにつき銅3ミリグラム以下
- (30) 亜鉛及びその化合物 1 リットルにつき亜鉛 2 ミリグラム以下
- (31) 鉄及びその化合物(溶解性) 1 リットルにつき鉄10ミリグラム以下
- (32)マンガン及びその化合物(溶解性) 1リットルにつきマンガン10ミリグラム以下
- (33) クロム及びその化合物 1 リットルにつきクロム 2 ミリグラム以下
- (34) ダイオキシン類 1 リットルにつき10ピコグラム以下
- (35) 温度 45度未満
- (36)アンモニア性窒素、亜硝酸性窒素及び硝酸性窒素含有量 1リットルにつき380ミリグラム未満
- (37) 水素イオン濃度 水素指数5を超え9未満
- (38)生物化学的酸素要求量 1リットルにつき5日間に600ミリグラム未満
- (39) 浮遊物質量 1 リットルにつき600ミリグラム未満
- (40) ノルマルヘキサン抽出物質含有量
 - ア 鉱油類含有量 1リットルにつき5ミリグラム以下
 - イ 動植物油脂類含有量 1リットルにつき30ミリグラム以下
- (41) 窒素含有量 1 リットルにつき240ミリグラム未満
- (42) 燐含有量 1 リットルにつき32ミリグラム未満
- (43)前各号に掲げる物質又は項目以外のもので良好な生活環境の保全に関する条例(昭和48年長野県条例第11号)に基づき当該公共下水道からの放流水に関する排水基準が定められたもの(第38号に掲げる項目に類似する項目及び大腸菌数を除く。) 当該排水基準に係る数値

(水質管理責任者制度)

第13条 除害施設又は特定施設を設置した者は、規程で定めるところにより、その維持管理に 関する業務を行う水質管理責任者を選任し、遅滞なくその旨を管理者に届け出なければな らない。

(除害施設の設置等の届出)

- 第14条 除害施設を設置し、休止し又は廃止しようとする者は、規程で定めるところにより、 あらかじめ、その旨を管理者に届け出なければならない。届け出た事項を変更しようとす るときも、同様とする。
- 2 第9条の規定は、除害施設の新設等を行う場合に準用する。

(排除の停止又は制限)

- 第15条 管理者は、公共下水道への汚水の排除が次の各号の一に該当するときは、排除を停止 させ、又は制限することができる。
 - (1) 公共下水道を損傷するおそれがあるとき。
 - (2) 公共下水道の機能を阻害するおそれがあるとき。

- (3) 前2号に掲げるもののほか、管理者が管理上必要があると認めるとき。 (使用開始等の届出)
- 第16条 使用者が公共下水道の使用を開始し、休止し、若しくは廃止し、又は現に休止しているその使用を再開しようとするときは、当該使用者は、規程で定めるところにより、あらかじめ、その旨を管理者に届け出なければならない。
- 2 法第11条の2、第12条の3、第12条の4又は第12条の7の規定による届出をした者は、前項の規定による届出をした者とみなす。

第5章 使用料等

(使用料の徴収)

- 第17条 管理者は、公共下水道の使用について、使用者から使用料を徴収する。
- 2 使用料は、使用月毎に、当該使用月における公共下水道の使用について、納入通知書により徴収する。
- 3 使用料の納期限等は、管理者が別に定める。
- 4 前2項の規定に関わらず、管理者は、土木建築に関する工事の施行に伴う排水のため、公共下水道を使用する場合、その他の公共下水道を一時使用する場合において必要があると認めるときは、使用料を前納させることができる。この場合において、使用料の精算及びこれに伴う追加徴収又は還付は、使用者から公共下水道の使用を廃止した旨の届出があったとき、その他管理者が必要があると認めたときに行う。

(使用者の区分)

- 第18条 使用料を徴収する使用者の区分は、次のとおりとする。
 - (1) 一般家庭 もっぱら生活に起因する汚水のみを公共下水道に排除する家庭
 - (2) 事業所等 公共施設、会社、営業店舗、集会施設など前号以外のすべての施設 (使用料の額)
- 第19条 使用料の額は、使用者の区分に応じ、別表第1に定めるところにより算出した金額 (1円未満の端数は切り捨てる。)とする。

(使用料の算定基準)

- 第20条 使用料の算定基準は、次のとおりとする。
 - (1) 一般家庭の使用料の算定の基礎となる人数については、毎年5月1日の基準日において現に居住する人数によるものとし、翌月分の使用料から適用する。ただし、施設の使用を開始又は再開する場合にあっては、その届出のあった日において現に居住する人数によるものとし、次の基準日まで適用する。
 - (2) 事業所等の従量料金の算定の基礎となる使用量は、次に掲げる場合の区分に応じて、それぞれ次に掲げるとおりとする。
 - ア 村営水道を使用する場合 中川村営水道条例(昭和51年条例第11号)第25条に規定する、あらかじめ村長が定めた日の量水器の検針による水道使用量
 - イ 村営水道以外の水(以下「自家用水等」という。)を使用する場合 公共下水道に 排除される自家用水等の使用量を計ることのできる量水器の検針による水道使用量
 - ウ 村営水道と自家用水等を併用する場合 村営水道の使用量と公共下水道に排除される自家用水等の使用量を合算した使用量
 - エ 製氷業その他の営業で、営業に伴い使用する水の量が、営業に伴い公共下水道に排除する汚水の量と著しく異なる場合 使用者が毎使用月に公共下水道に排除した汚水量

を記載した申告書により管理者が認定する水量

2 前条の規定に関わらず、月の中途において公共下水道の使用を開始、休止、再開又は廃止した場合で、その月の使用日数が2分の1以下であるときの使用料の額は、一般家庭にあっては、基本料金の2分の1の額にその月の現日数を基礎として日割りによって計算した人数料金を加えた額、事業所等にあっては、基本料金の2分の1の額にその月の現日数を基礎として日割りによって計算した従量料金を加えた額とする。

(使用料の督促等)

- 第21条 管理者は、第17条第3項に規定する納期限までに使用料を納付しない者があるときは、督促状を発して督促しなければならない。
- 2 使用料の延滞金の徴収については、中川村税外収入金の延滞金徴収条例(昭和57年条例第 1号)の規定の例による。

(使用料の減免)

第22条 管理者は、公益上その他特別の事情があると認めるときは、使用料を減免することができる。

(資料の提出)

第23条 管理者は、使用料を算定するために必要な限度において、使用者から資料の提出を求めることができる。

(手数料)

第23条の2 手数料は、別表第2のとおりとする。

第6章 雑則

(改善命令)

第24条 管理者は、公共下水道の管理上必要があると認めるときは、排水設備又は除害施設の 設置者若しくは使用者に対し、期限を定めて、排水設備又は除害施設の構造若しくは使用の 方法の変更を命ずることができる。

(行為の許可)

第25条 法第24条第1項の許可を受けようとする者は、申請書を管理者に提出しなければならない。許可を受けた事項の変更をしようとするときも、同様とする。

(許可を要しない軽微な変更)

第26条 法第24条第1項の規定による条例で定める軽微な変更は、公共下水道の施設の機能を 妨げ、又はその施設を損傷するおそれのない物件で、同項の許可を受けた物件(地上に存す る部分に限る。)に対する添加であって、同項の許可を受けた者が当該物件の設置の目的に 付随して行うものとする。

(占用)

- 第27条 公共下水道の敷地又は排水施設に物件(次条に規定する電線又は物件を除く。以下「占用物件」という。)を設け、継続して公共下水道の敷地又は排水施設を占用しようとする者は、次の各号に掲げる事項を記載した申請書を管理者に提出して、許可を受けなければならない。許可を受けた事項を変更しようとするときも、同様とする。ただし、占用物件の設置については、法第24条第1項の許可を受けたときは、その許可をもって占用の許可とみなす。
 - (1) 公共下水道の敷地又は排水施設の占用の目的
 - (2) 公共下水道の敷地又は排水施設の占用の期間

- (3) 公共下水道の敷地又は排水施設の占用の場所
- (4) 占用物件の構造
- (5) 工事実施の方法
- (6) 工事の期間
- (7) 公共下水道の復旧の方法
- 2 管理者は、前項の許可を受けた者から占用料を徴収する。ただし、次の各号に掲げる占用 物件については、この限りでない。
 - (1) 公共下水道に下水を排除することを目的とする占用物件
 - (2) 国の行う事業で一般会計をもって経理するものに係る占用物件
 - (3) 国の行う事業で特別会計をもって経理するもののうち企業的性格を有しない事業に係る占用物件
 - (4) 地方公共団体の行う事業で地方公営企業法(昭和27年法律第292号)第2条第1項に規定する地方公営企業以外の事業に係る占用物件
- 3 前項の占用料の額及び徴収については、中川村道路占用料徴収条例(昭和61年条例第6号)の規定を準用する。

(占用許可の基準)

- 第27条の2 管理者は、公共下水道の排水施設の暗渠である構造部分に電線及び下水道法施行令(昭和34年政令第147号)第17条の3に規定する物件(以下この条及び次条において「電線等」という。)の占用に係る前条第1項の申請があった場合においては、その占用が必要やむを得ないものであり、かつ、電線等が次に掲げる基準に適合するものである場合に限り、当該占用を許可することができる。
 - (1) 電線等を設置する箇所が下水の排除及び暗渠の管理上支障のない箇所であること。
 - (2) 電線等を設置する管渠の断面積に占める当該電線等の断面積の割合及び電線等の本数が下水の排除及び暗渠の管理上支障のないものであること。
 - (3) 電線等の構造が堅牢で、かつ、表面が平滑であって、耐久性及び耐水性のあるものであること。
 - (4) 電線等の設置に係る工事及び維持管理の方法は、暗渠の構造及び機能に影響を及ぼさないものであり、かつ、公共下水道管理者の監理のもとに行われること。
 - (5) 電線等は、原則として電圧のかからないものとすること。
 - (6) その他公共下水道の管理上支障とならないものであること。

(占用期間)

第27条の3 第27条第1項の規定による占用の期間は、電気通信事業法(昭和59年法律第86号)の 規定に基づいて設ける電線等にあっては10年以内とし、その他のものにあっては5年以内と する。

(原状回復)

- 第28条 第27条第1項の許可を受けた者は、その許可により占用物件を設けることができる期間が満了したとき、又は当該占用物件を設ける目的を廃止したときは、当該占用物件を除却し、公共下水道を原状に回復しなければならない。ただし、管理者が原状に回復することが不適当であると認めたときは、この限りでない。
- 2 管理者は、第27条第1項の占用の許可を受けた者に対して、前項の原状回復又は原状に回復することが不適当な場合の措置について必要な指示をすることができる。

第7章 罰則

(罰則)

- 第29条 次の各号に掲げる者については、5万円以下の過料を科する。
 - (1) 第7条の規定による確認を受けないで排水設備等の新設を行った者
 - (2) 第8条の規定に違反して、排水設備工事を実施した者
 - (3) 偽りその他不正な手段により第8条の5に規定する責任技術者の登録を受けた者
 - (4) 第9条の規定に違反した者
 - (5) 第10条又は第12条の規定に違反した使用者
 - (6) 第14条の規定による届出を怠った者
 - (7) 第23条の規定による資料の提出を求められてこれを拒否し、又は怠った者
 - (8) 第24条に規定する命令に違反した者
 - (9) 前条第2項の規定による指示に従わなかった者
 - (10)第7条第1項及び第25条の規定による申請書、第7条第2項本文、第14条及び第16条の規定による届出書、第20条第1項第2号エの規定による申告書又は第23条の規定による 資料で、不実の記載のあるものを提出した申請者、届出者、申告者又は資料の提出者
- 第30条 詐欺その他不正の行為により使用料及び手数料の徴収を免れた者については、その徴収を免れた金額の5倍に相当する金額(当該5倍に相当する金額が5万円を超えないときは、5万円とする。)以下の過料を科する。

第8章 補則

(補則)

第31条 この条例の施行に関し必要な事項は、管理者が定める。

附則

この条例は、平成9年4月1日から施行する。

附 則(平成10年6月16日条例第19号)抄

(施行期日)

1 この条例は、公布の日から施行する。

附 則(平成12年3月7日条例第8号)抄

(施行期日)

1 この条例は、平成12年4月1日から施行する。

(公営住宅管理条例、公共下水道条例及び村営水道条例の一部改正に伴う経過措置)

3 この条例の施行前にした行為に対する罰則の適用については、なお従前の例による。

附 則(平成12年12月12日条例第32号)

(施行期日)

1 この条例は、公布の日から施行する。ただし、第11条第2項の改正規定は、平成13年1月6日から施行する。

(経過措置)

2 この条例の施行の際、現に排水設備工事の業者の指定等に関する規程の規定により指定されている指定工事店及び登録されている責任技術者は、この条例による改正後の公共下水道 条例の規定により指定された指定工事店及び登録された責任技術者とみなす。

附 則(平成14年12月12日条例第42号)

(施行期日)

1 この条例は、公布の日から施行し、平成14年4月1日から適用する。

(経過措置)

2 改正後の公共下水道条例の規定は、平成14年4月1日以降に申請のあった責任技術者の登録から適用し、同日前に申請のあった責任技術者の登録については、なお従前の例による。

附 則(平成18年6月21日条例第24号)

この条例は、公布の日から施行する。

附 則(平成18年9月27日条例第26号)

この条例は、公布の日から施行する。

附 則(平成19年3月19日条例第11号)

(施行期日)

1 この条例は、平成19年4月1日から施行する。ただし、第19条及び別表第1の改正規定は、平成19年6月1日から施行する。

(経過措置)

2 改正後の中川村公共下水道条例の規定は、平成19年6月1日以後に徴収する使用料について適用し、平成19年5月31日までに徴収する使用料については、なお従前の例による。

附 則 (平成22年9月24日条例第14号)

この条例は、公布の日から施行し、平成22年7月1日から適用する。

附 則(平成23年12月19日条例第22号)

この条例は、公布の日から施行する。

附 則(平成24年6月12日条例第13号)

この条例は、平成24年7月9日から施行する。

附 則(平成25年3月12日条例第11号)

この条例は、平成25年4月1日から施行する。

附 則(平成26年3月13日条例第7号)

(施行期日)

1 この条例は、平成26年4月1日から施行する。

(経過措置)

2 改正後の中川村公共下水道条例の規定は、平成26年7月1日以後に徴収する使用料について適用し、平成26年6月30日までに徴収する使用料については、なお従前の例による。

附 則(平成27年3月20日条例第8号)

この条例は、公布の日から施行する。

附 則(平成27年12月16日条例第20号)

この条例は、公布の日から施行する。

附 則(令和元年9月30日条例第15号)

この条例は、令和2年1月1日から施行する。

附 則(令和元年12月18日条例第28号)

この条例は、公布の日から施行する。ただし、第2条の規定は、令和2年4月1日から施行する。

附 則(令和6年9月10日条例第18号)

この条例は、公布の日から施行し、令和6年4月1日から適用する。

附 則(令和7年2月27日条例第10号)

この条例は、令和7年4月1日から施行する。 附 則(令和7年6月10日条例第16号) この条例は、公布の日から施行する。

別表第1 (第19条関係)

使用料

単位:円

使用者の区分		使用料の額(1か月につき)	
一般家庭	基本料金		1, 980
	人数料金	1人世帯	2, 200
		2人世帯	2,750
		3人世帯	3, 300
		4人世帯	3, 850
		5 人世帯	4, 400
		6 人世帯	4, 950
		7人世帯	5, 500
		8人世帯	6,050
		9人世帯	6,600
		10人世帯以上	7, 150
事業所等	基本料金		1,980
	従量料金	0 ~20m³まで	154
	(1 m³につき)	20m³を超え50m³まで	176
		50m³を超え100m³まで	198
		100m³を超え150m³まで	220
		150m³を超え250m³まで	242
		250m³を超える分	264

別表第 2 (第23条の 2 関係) 手数料

単位:円

種別	区分	金額
指定工事店の指定	新規指定1件につき	10,000
	更新指定1件につき	5,000
排水設備設計審査・工事検査	工事1件につき	10,000

7-5. 処理場容量計算書

- 1) 大草浄化センター
- 1. 計画概要
 - (1) 基本概要

1. 1 名称 大草浄化センター

1. 2 位置 中川村大草下平

1. 3 敷地面積 19,100㎡

1. 4 地盤高 現在 TP+520.790M

計画 TP+520.200M

- 1.5 周辺の土地利用 田畑
- 1. 6 下水排除方式 分流式
- 1. 7 処理法式

下水処理 オキシデーションディッチ法

汚泥処理 濃縮+搬出処分

1.8 放流先

名称 一級河川天竜川 (河床高TP+ M)

HHWL TP+ M

HWL TP+ M

LWL TP+ M

水質環境基準の設定値

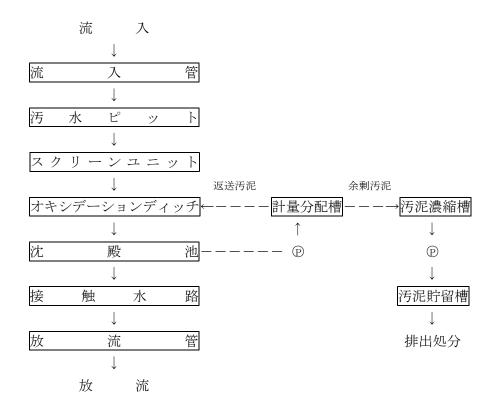
排出基準 BOD 200ppm, SS 70ppm

(2) 設計諸元

2. 1 計画下水量

項目	日平均汚水量(Q	日最大汚水量(Q	時間最大汚水量(Q
-K D	1)	2)	3)
家庭汚水量	3 2 4 m³/∃	3 8 4 m³/∃	7 6 8 m³/日
地下水量	7 7 m³/日	7 7 ㎡/日	7 7 ㎡/日
その他汚水量	の他汚水量 5 ㎡/日		1 O m³/日
計	4 0 6 m³/∃	4 6 6 m³/日	8 5 5 ㎡/日

2. 2 流入下水の水質、処理効果


百日	流入下水水質	2次処理施設		
項目	$\mathrm{mg}/\mathrm{\varrho}$	除去率 %	処理水水質 mg/l	
BOD	1 5 0	9 0	1 5	
SS	1 1 7	8 5	1 8	

2. 3 発生汚泥量

項目	含水率	日間発生量	年間発生量
19日	%	(日最大)	(日平均×365)
流入SS量	98.5	54.52kg/日	17,338.23kg/年
発生汚泥量	_	40.89kg/日	13,003.67kg/年
余剰汚泥量	99.4	6. 8 2 m³/日	2, 167. 28㎡/年
濃縮汚泥量	98.5	2. 7 3 m³/日	866.91㎡/年

発生汚泥量は流入SS量の75%とする。

(3) フローシート

2. 主要設備概要

主要施設名称	構造寸法及び仕様	施設数	項目	能力	備考
流入管渠	φ=200 mm 勾配: 3.5‰	1 基	計画流量	0.0054	
	満管流量=0.025 ㎡/sec		(m³/sec)		
汚水ピット	マンホール形式ポンプ場	1 基	有効容量(m³)	1.77	
	内径:1.5m		滞留時間(min)	3.0	
	マンホール深:4.5m				
汚水ポンプ	水中汚水ポンプ	2台	計画流量(m³/min)	0.59	計画時間最大
	$\phi 80 \times 0.70 \text{ m}^3/\text{min} \times 0.9 \text{m}$	内予1台	ポンプ容量 (m³/min)	0.70	
	×3.70KW				
オキシテ゛ーションテ゛ィッチ	円環状循環流水路式	1池	BOD - SS 負荷		
	池幅:4.60m		(kg BOD/kg SS/目)		
	池長:38.30m				
	有効水深: 3.0m				
エアレーション負荷	型式:スクリュー型	2 台	酸素供給能力	6.9	必要酸素
			(kg O ₂ /hr)		$({\rm kg}~{\rm O}_{\rm 2}/{\rm hr})$
沈殿池	放射流円形沈殿池	1池	水面積負荷 (m³/m³/日)	11.14	
	内径:7.30m		沈殿時間(hr)	6.5	
	有効水深: 3.0m		越流負荷(㎡/㎡/日)	25	
塩素接触水路	池幅:1.00m	1池	接触時間(min)	26.3	
	池長:12.00m				
	有効水深: 0.70m				
汚泥濃縮槽	重量式濃縮 (ホッパー形式)	1 槽	固形物負荷量	6.54	
	幅×長さ:2.50m×2.50m		(kg/m²/日)		
	有効水深: 2.90m				
汚泥貯留槽	短形貯留槽	2 槽	貯留容量 (m³)	26.3	
	幅×長さ:2.50m×2.50m		貯留日数(日)	8.8	
	有効水深: 2.10m				

3. 容量計算

(1) 流入管

現在地盤高: TP+520.790 計画地盤高: TP+520.200

管種:塩ビ管(粗度係数n=0.010)

管径:200mm 勾配:3.5‰

管底高: TP+518. 860M

满管流量: 0. 025 m³/秒 満管流速: 0. 803 m³/秒

各流量時における水深および水位高

名 称	日平均汚水量	日最大汚水量	時間最大汚水量
流量 (m³/sec)	0.0047	0.0054	0.0099
水深(mm)	5 8	6 2	8 6
水位高(TP+M)	518.918	518.922	518.946

(2) 汚水ピット

項目	記号	設計計算
	11 万	
形式		マンホール形式ポンプ場
計画下水量	Q_3	855 $m^3/$ 日=0.59 $m^3/$ 分
有効水深	D ₃	ポンプの最低運転水位(L.W.L)より、流入管管底高
		(H. W. L)までを有効水深とし、1.0m以上確保す
		る。
所要容量	V_3	ポンプの発祥頻度を考慮し、有効容量(L.W.L~H.
		W. L)を計画ポンプ容量の2分間以上とする。
		×2=1. 18m³以上
仕 様		
構造		組立マンホール
マンホール径	В	1.5m (3号マンホール)
流入管管底深	A	2. 64 m
マンホール深	Н	4. 54 m
検 討		
水面積	S	$B^2 \times \pi \times 1/4$
有効水深	D	ポンプ最低運転水深(E)を0.9mとする。
		D = H - A - E = 1 0 m
有効容量	V	$S \times D = 1$. 7 7 m ³
滞留時間	Т	V ∕ Q ₃ = 3 分間分

(3) 汚水ポンプ設備

項目	記号	設計計算
計画下水量	Q 1	計画 日平均汚水量:406㎡/日=0.28㎡/分
	Q_2	計画 日最大汚水量:466㎡/日=0.32㎡/分
	Q_2	計画 時間最大汚水量:855㎡/日=0.59㎡/分
ポンプ形式		水中汚水ポンプ
ポンプ台数		2台(内1台予備)とし、2台同時運転も可能な設備と
		する。
ポンプロ径		80㎝以上とする。
		流入管管底高(H.W.L) 518.860M
		圧送管最高管芯高 523.500M
実揚程	h 1	実揚程 4.64m
		ポンプ廻りの配管損失 0.50m
		圧送管の損失 0.50m
		実揚程 4.64m
		余裕 0.00m
全揚程	H 1	計 5.64m
ポンプ仕様		
口径	φ	8 O mm
揚水量		0. 70 m³/分
揚程		9. 0 m
電動機出力		3. 7 OKW
台数		2台(内1台予備)

(4) スクリーンユニット

項目	記号	設計計算
型式	Q 1	鋼板製水路一体型スクリーン(主要部SUS)
計画下水量		855 $m^3/日=0$. 59 $m^3/分$
(時間最大)		
スクリーン仕様		
眼 開		3 0 mm
スクリーン巾		0.6 m
処理能力	Q_3	0. 59㎡/分
掻き上げ能力		
動力		O. 1 KW
台 数		1台
外形寸法		巾0. 90m×長1. 50m×1. 10m
検 討		
スクリーンかす発生量	q	スクリーンかす発生量は、日最大汚水量(Q²)に対し
		0.015 m³/1,000 m³、単位重量 1,000 m³とする。
		Q ₂ $(m^3/B) \times 0.015 \text{ m}^3/1,000 \text{ m}^3 \times 10^2 = 6.99 \text{Kg/B}$

(5) オキシデーションディッチ

(5) オキシアーション	1	
項目	記号	設計計算
処理方式 型		オキシデーションディッチ法
型式		円環状循環流水路式
計画下水量	Q_2	4 6 6 m³/日=1 9. 4 2 m³/時
(日最大)		
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
流入下水水質	C_{sb}	BOD 150 mg/0
	C ss	SS 1 1 7 mg/0
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
流入下水BOD量	B sb	BOD (C×Q×10) 69.90Kg/日
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
流入下水SS量	B _{ss}	SS $(C \times Q \times 10)$ 54.52 Kg/ \exists
DOD 004#	_	
BOD-SS負荷	L s	0. 05kgBOD/kgSS/日(0. 03~0. 07)
		$\mathbf{M}_{\mathbf{L}} \subseteq \mathbb{C} = $
槽内混合液濃度	Са	MLSS=3, 000mg/ ℓ (2, 500 \sim 5, 000)
产光光油冲车		5 0 0 0 0 0 7 /0
返送汚泥濃度	Cr	5, 000mg/0
- 正西次县	17.	$P \times 1 = 0.00 / I \times C = 4.6.6 \text{ m}^3$
所要容量	V_1	$B_{sb} \times 1$, $0 \ 0 \ 0 / L_s \times C_A = 4 \ 6 \ 6 \ m^3$
 構造寸法		 池幅(B) 4. 6 0 m×池長(L) 3 8. 3 0 m×
		有効水深(H) 3. 0 m×(N) 1 池
有効容量	V_{2}	$B \times L \times H \times N = 5 \ 2 \ 9 \ \text{m}^3$
1 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	V 2	$B \times L \times \Pi \times W = 3 \times 3 \text{ in}$
 検 討		
返送汚泥率	R	$I \times C_{ss} + R \times C_r / 1 + R = C a R = 150\%$
及21776中		TACSS TRACIA TO CA R TO CA
エアレーション時間	T ₁	 V₂×24/Q₂=27.2時間
7 - A MA LOT LED		The state of the s
BOD-SS負荷	Ls	$B_{sb} \times 1$, 000/ $V_2 \times C_a =$
2 2 2 114		0. 0 4 kg B O D / kg S S / 目
 汚泥日令	As	$V_2 \times C_a / B_{ss} \times 1, \ 0.00 = 2.9.1 \ B_{ss} \times 1$
		, , ,
BOD容積負荷	Lr	$B_{sb}/V_2 = 0$. $1.3 \text{ kg B O D/m}^3/\Box$
所要酸素量		流入BODkg当り2. 0kgO2とする。
721231231		$(1. \ 8 \sim 2. \ 2)$
		$B_{sb} \times 2$. $0 = 1 \ 3 \ 9$. $8 \ 0 \ kg \ O_{2} / \exists$

(6) 沈殿池

(6) 化殿池		
項目	記号	設計 計算
型式		放射流円形沈殿池
		(中央駆動チェーン吊り下げ式汚泥掻寄機付)
計画下水量	Q_2	466㎡/日=19.42㎡/時
(日最大)		
水面積負荷	OFR	1 2 m³/m²/目
有効水深	H 1	3. 0 m
所要水面積	A 1	$Q_2 / OFR = 38.83 \text{ m}^3$
構造寸法	V 1	$A_1 \times H = 1 \ 1 \ 6. \ 4 \ 9 \ m^3$
内 径	d	7. 30 m
有効水深	H 2	3. 0 m
池数	N	1池
有効水面積	A 2	$d^2 \times \pi / 4 = 41.85 \text{ m}^3$
有効容量	V_2	$A_2 \times H_2 = 1 \ 2 \ 5. \ 5 \ 6 \ \text{m}^3$
越流堰長	Q 2	19 m
検 討		
水面積負荷	OFR	$Q_2/A_2 = 1 \ 1. \ 1.4 \ \text{m}^3$
沈殿時間	T 2	V ₂ ×24/Q ₂ =6.5時間
越流負荷		$Q_2/\ell_2 = 2 5 \text{m}^3/\text{m}^2/ \text{H}$

(7) エアレーション装置

項目	記号	設計計算
型式		
計画下水量	Q_2	4 6 6 m³/日=1 9. 4 2 m³/時
(日最大)		
必要酸素量	QOD	必要酸素量は、流入BOD量当り2.0kgO2/kgBOD
		とする。
		$C_s \times Q_2 \times 1_{0^{-2}} \times 2. 0 =$
		139.80㎏0₂/日
時間当たりの	Op'	OD/24=5.83kg/時
必要酸素量		
 酸素供給能力	S ₀ R	$O_{D}' \times C_{sw} / 1. 0.2 4^{T-20} \times 0. 9.3 \times$
嵌条供和能 刀	SOK	$(0.97 \times C_{sw}/1.024 \times 0.93 \times (0.97 \times C_{s}-C_{A})$
		(0. 3 / へしs CA) ここに Csw:清水中20℃での酸素飽和濃度(mg/0)
		C _s :清水中T [°] Cでの酸素飽和濃度 (mg/0)
		CA:混合液のDO(1.5 mg/l)
		= 7. 7 3 kg O 2/時
エアレーション装置仕様		
型 式		スクリュー式
能力		6. 90kgO₂/時
出力		4. 5 KW
台 数		2台

(8) 塩素接触水路

項目	記号	設計計算
	IL 7	
型式		水路形式塩素接触タンク
計画下水量	Q_2	466㎡/日=19.42㎡/時
(日最大)		
接触時間		15分(放流堰での接触時間を含む)
所要容量		$Q_3 \times 15 = 4.80 \text{ m}^3$
構造寸法		水路巾 (B) 1. 0 m×水路長 (L) 1 2 m×
		水深(H) 0. 7 0 m× 1 水路
検 討		
容量	V	$B \times L \times H = 8. 40 \text{ m}^3$
接触時間	Тс	V / Q D = 2 6. 3分
放流堰接触時間		0分
塩素注入設備		
使用薬品		固形次亜塩素酸カルシウム(有効塩素70%)
注入率	Р	$3\mathrm{mg}/\mathrm{\ell}$ (2 \sim 4)
注入量		$Q_2 \times P \times 10^{-3} \times 100 / 70 \times 1 / \gamma$
		= 1. 997 kg/日
		γ:次亜塩素酸ソーダ比重 (1:1)

(9) 濃縮槽

項目	記号	設 計 計 算
型式		重力式濃縮槽(ホッパー形式)
発生汚泥量	S 1	流入SS量の75%とする。
		C s $(SS) \times Q_2 \times 10^{-3} \times 0.75$
		=40.89 kg/ H
余剰汚泥濃度	W_1	99.4%
余剰汚泥量	\mathbf{Q}_{S1}	$S_1 \times 1 \ 0 \ 0 / \ (1 \ 0 \ 0 - 9 \ 9. \ 4) \times 1 \ 0^{-3}$
		$= 6.82 \text{m}^3/ \text{B}$
固形物負荷	S 1	1 2 kg/m³×日
所要水面積		$S_1/S_1 = 3. 41 \text{ m}^2$
濃縮汚泥含水率	$ m W_{2}$	98.5%
濃縮汚泥量	\mathbf{Q}_{S2}	$S_1 \times 100 / (100 - 98.5) \times 10^{-3}$
		$=2. 73 \text{ m}^3/\text{B}$
IH-SI I SI		
構造寸法		巾(B) 2. 50 m×長(L) 2. 50 m×(N) 1 槽
有効水面積	A 2	$B \times L \times N = 6. 2.5 \text{ m}^2$
検討		
固形物負荷		$S_1/A_2 = 6. 5.4 \text{ kg/m}^3 \times \exists$

(10) 汚泥貯留槽

項目	記号	設 計 計 算
型式		短形貯留槽
濃縮汚泥量	\mathbf{Q}_{S2}	2. 73 m³/日
		バキュームカーによる搬出能力を考慮して決定する。
貯留日数		槽巾(B)2. 50m×槽長(L)2. 50m
		×水深(H) 2. 10×2槽
製造寸法		
検 討		
容量	V	$B \times L \times H \times 2$ 槽= 2 6. 5 m ²
貯留日数		V ∕ Q _{S2} = 8.8 日

2) 片桐浄化センター

1. 計画概要

(1) 基本概要

1. 1 名称 大草浄化センター

1. 2 位置 中川村片桐

1. 3 敷地面積 0. 422ha

1. 4 地盤高 現在 TP+475. 280M

計画 TP+476.000M

1.5 周辺の土地利用 田畑

1. 6 下水排除方式 分流式

1. 7 処理法式

下水処理 オキシデーションディッチ法

汚泥処理 濃縮+移動脱水車による場外搬出処分

1.8 放流先

隣接農業用排水路

(2)計画水量・水質

2. 1 計画下水量

<u>г</u> п		全体計画		事業計画		
項目	日平均	日最大	時間最大	日平均	日最大	時間最大
家庭汚水量	6 2 1	7 3 6	1, 472	5 2 1	6 1 8	1, 235
地下水量	1 4 7	1 4 7	1 4 7	1 2 4	1 2 4	1 2 4
計	7 6 8	883	1, 619	6 4 5	7 4 2	1, 359

[※]計画流入水量は全て直接スクリーンユニットに流入する。

2. 2 流入下水の水質、目標処理水質

項目	流入下水水質	2次処	理施設
(4)	mg/Q	除去率 %	処理水水質 mg/l
BOD	1 5 0	9 0	1 5
SS	1 1 7	8 5	1 8

(3) 容量計算

3. 1 設計水量·水質

- ・施設設計に用いる水量・水質は汚泥処理施設からの返流水を加味して設定する。
- ・上記を踏まえ、次のように容量計算を行う。(固形物収支計算書参照)

項目	計画流入水量	返流水量	設計流入水量
日最大汚水量(m³/日)	883	18.14	9 0 1
時間最大汚水量 (m³/日)	1, 619	18.14	1, 637

(別途固形物収支計算による)

3. 2 設計方針

- ・処理施設はPOD(プレハブ式オキシデーションディッチ)を採用する。
- ・池数は1池とする。PODは100㎡/日単位となっている為、能力は90㎡/日とする。
- ・共通施設(主ポンプ、管理棟等)は、900㎡/日対応の標準タイプをベース にする。

≪スクリーンユニット≫

項目	記号	全体計画/事業計画
型式		円形スクリーン脱水装置
設計水量	Q	9 0 1 m³/日=0. 6 3 m³/分
(日最大)		
スクリーン仕様		(POD900㎡/日対応の標準仕様による。)
処理能力		2. 3 m³/分
動力		O. 75KW
台 数		1台
外形寸法		W0. 80×L2. 06×H1. 40
スクリーンかす発生量	q	スクリーンかす発生量は、日最大汚水量(Q)に対し
		0.015 ㎡/1,000 ㎡、単位重量 1,000 ㎡とする。
		901×0.015/1,000×1,000
		$= 1 \ 3. \ 5 \ kg/ \ \exists$

≪オキシデーションディッチ≫

《オキシアーションア》 「 	1	
項目	記号	設計計算
処理方式		オキシデーションディッチ法
型式		
設計水量	Q	9 0 1 $m^3/$ 日=37.55 $m^3/$ 時
(日最大)		
設計流入水質	C_{sb}	BOD: 185mg/L
	Dss	S S : 1 4 0 mg/L
流入下水BOD量	B sb	(900m³/日対応)
		$: 185 \times 901 \times 0.001$
		$= 1 6 6. 7 1 (kg/\exists)$
流入下水SS量	Bss	(900㎡/日対応)
// // // · · · · · · · · · · · · · · ·	2 00	: 1 4 0 × 9 0 1 × 0 . 0 0 1
		$= 1 \ 2 \ 6 \ . \ 1 \ 6 \ (kg/\exists)$
BOD-SS負荷	L _s	0.05kgBOD/kgSS/日
	L s	O. O JAGDOD/ AGS S/ H
 槽内混合液濃度		$\mathbf{M}_{\mathbf{I}} = \mathbf{C} = \mathbf{A}_{\mathbf{I}} = 0 = 0 = 0 = 0 = 0$
	C _a	MLSS = 4, $000 mg/L$
返送汚泥濃度	Cr	5, 000mg/L
~~ + =		(0 0 0 3 (0 11 4)
所要容量	V_1	(900㎡/日対応)
		$166.71 \times 1,000/(0.05 \times 4,000)$
		$= 8 \ 3 \ 4 \ \text{m}^3$
構造寸法		(900m³/日対応)
		水路巾(B)5. 4m 池長(L)55. 6m
		(POD標準仕様による。)
		有効水深(H)3.0m 池数(N)1池
		容積Ⅴ2=901
有効容量	V_2	$B \times L \times H \times L = 9 \ 0 \ 1 \ \text{m}^3$
検 討		
返送汚泥率	R	$I \times C_{ss} + R \times C_{r} / (1 + R) = C_{r}$ $R = 1 \ 5 \ 0 \%$
		9 0 0 m³/日対応
エアレーション時間	Т	V ₂ ×24/Q=24.0時間
BOD-SS負荷	L _s	$B_{sb} imes 1$, 000/ (V ₂ $ imes$ C_a)
		= 0. 0.5 kg B O D/kg S S/H
 汚泥日令	As	$V_2 \times C_a / (B_{ss} \times 1, 000) = 28.6 \text{H}$
BOD容積負荷	L _r	$V_2 \wedge C_3 \wedge (B_{ss} \wedge 1, 000) = 2.3.01$ $B_{sb} / V_2 = 0.19 \text{ kg B O D} / \text{m}^3 / \text{H}$
	Lr	
所要酸素量 		流入BODkg当り2.0kgO2とする。
		$B_{sb} \times 2$. $0 = 3 \ 3 \ 3$. $4 \ O_2 / \Box$

≪沈殿池≫

項目	記号	設計 計算
型式		放射流円形沈殿池
		(中央駆動チェーン吊り下げ式汚泥掻寄機付)
設計水量	Q	901㎡/日=37.55㎡/時
(日最大)		
水面積負荷	OFR	8 m³/m²/目
有効水深	H_1	3. 0 m
所要面積	A_1	$Q_2/OFR = 1 \ 1 \ 2 . \ 6 \ 4 \text{ m}^3$
構造寸法	V_1	$A_1 \times H = 3 \ 3 \ 7$. $9 \ 3 \ m^3$
		(900m³/日対応)
		内径 (d) 12.0 m 面積=113.10 m²
		有効水深(H) 3. 0 m 池数(N) 1 m
		(900㎡/日対応)
有効水面積	A_2	$d2 \times \pi / 4 = 1 \ 1 \ 3 \ . \ 1 \ 0 \ m^3$
有効容量	V_2	$A_2 \times H_2 = 3 \ 3 \ 9 \ . \ 2 \ 9 \ m^3$
越流堰長		3 4. 6 m
検 討	OFR	
水面積負荷	T 2	$Q/A_2 = 7. 9 7 \text{ m}^3/\text{m}^2/\text{B}$
沈殿時間		$V_2 \times 2 \ 4 / Q = 9$. 0時間
越流負荷		$Q / 1 2 = 2 6 \text{ m}^3 / \text{m}^2 / \text{B}$

《エアレーション装置》

項目	記号	設計計算
型式		
設計水量	Q	9 0 1 m³/日
(日最大)		
エアレーション装置仕様		(900㎡/日対応の標準仕様による。)
型式		スクリュー式
能力		7. 32㎏0₂/時・基
出力		4. 5 KW/基
台 数		4

≪塩素接触水路≫

	1	
項目	記号	設計計算
		(POD900㎡/日対応の標準仕様による。)
型式		水路型式塩素接触タンク
計画下水量	Q	901㎡/日=0.63㎡/分
(日最大)		
接触時間		15分(放流堰での接触時間を含む)
所要容量		$Q \times 15 = 9.39 \text{ m}^3$
構造寸法		水路巾(B)1.0m×水路長(L)13.4m
		×水深(H) 0.70 m
検 討		
容量	V	$B \times L \times H = 9$. 3.8 m^3
接触時間	Тс	V/Q=15.0分
放流堰接触時間		0分
塩素接触設備		
使用薬品		固形次亜塩素酸カルシウム(有効塩素70%)
注入率	Р	$3 \text{ mg/} \ell$
注入量		$Q_2 \times P \times 0.001 \times 70\% \times 1/\gamma = 1.892 \text{ kg/} $
		γ: 次亜塩素酸ソーダ比重

≪汚泥濃縮槽≫

《1777年版州日1日》							
項目	記号	設計計算					
		(POD900㎡/日)対応の標準仕様による。)					
型式		重力式濃縮槽(ホッパー形式)					
濃縮投入汚泥	S 1	= 9 2. 6 8 kg/日					
固形物量		(別途固形物収支計算による)					
余剰汚泥濃度	\mathbf{W}_1	0.5%					
余剰汚泥量	\mathbf{Q}_{S1}	$= 18.54 \mathrm{m}^3/\mathrm{H}$					
		(別途固形物収支計算による)					
固形物負荷	S_1	3 0 kg ∕ m²×日					
所要水面積		$S_1/S_1 = 3. \ 0.9 \text{ m}^3$					
構造寸法		巾(B)2. 50m×長(L)2. 50m×(N)1槽					
	A_2	$B \times L \times N = 6$. 25 m ²					
検 討							
固形物負荷		$S_1/A_2=1$ 4. $8 \text{ kg/m}^2 \times \exists$					

≪汚泥貯留槽≫

項目	記号	設 計 計 算
		(POD900㎡/日対応の標準仕様による。)
型式		短形貯留槽
濃縮汚泥量	\mathbf{Q}_{S2}	= 5. 56㎡/日 (別途固形物収支計算による)
貯留日数		移動脱水車による搬出能力を考慮して決定する。
製造寸法		巾(B)2. 50m×長さ(L)2. 50m×
		水深(H)2. 10m×(N)2槽
検 討		
容量	V	$B \times L \times H = 26. 25 \text{ m}^3$
貯留日数		$V/Q_{S2}=4$. 7日

≪汚泥脱水≫

項目	設 計 計 算
型式	移動脱水車による汚泥脱水
	濃縮汚泥濃度 98.5%
脱水機投入固形物量	=83.41kg/日 (別途固形物収支計算による)
脱水機投入汚泥量	= 5. 56㎡/日 (別途固形物収支計算による)
固形物回収率	90%
脱水固形物量	=80.00kg/日 (別途固形物収支計算による)
脱水汚泥量	= 0. 400㎡/日 (別途固形物収支計算による)
ろ布巾	= 1. 0 m
処理速度	$= 1 \ 0 \ 0. \ 0 \ kg/h$
運転時間	$= 83. 41 \times 4/1. 0/100. 0$
	= 3. 3時間/回
処理能力	$= 1 \ 0 \ 0. \ 0 / 0. \ 0 \ 1 \ 5 \times 1. \ 0 \ E - 0. \ 3$
	$= 6.67 \text{ m}^3/\text{h}$

(4) 発生汚泥量

全体計画及び事業計画における発生汚泥量は、別紙収支計算より次のようになる。

項目	全体計画=事業計画
濃縮投入汚泥固形物量(kg/日)	92.7
濃縮投入汚泥固形物量(m³/日)	18.5
脱水投入汚泥量(m³/日)	5. 56
脱水汚泥量 (m³/日)	0.40

画 面 所 面 所 所 所 分 田 母 份 股 份 股 </th <th>画</th> <th>流総計画</th> <th>野 全 休 計 画</th> <th></th> <th>10年十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二</th> <th></th> <th>1</th> <th></th> <th></th>	画	流総計画	野 全 休 計 画		10年十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二		1		
標 年 遊 百 面 競 (布治) 競 田 日 型 田 力 日 日 日 財 力 日 日 日 財 力 日 日 力	# la			変更全体計画	都中計画秩定	既事業計画	炎見事業計画	備	考
面 面 定 任 観光(宿泊) 施 租 加 租 日 平 日 日 日 <t< th=""><th>pa イ イ イ イ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ</th><th>令和17年</th><th>令和7年</th><th>令和12年</th><th>令和7年</th><th>争47年</th><th>令和12年</th><th></th><th></th></t<>	pa イ イ イ イ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ ガ	令和17年	令和7年	令和12年	令和7年	争47年	令和12年		
(記事) (記事) (記事) (記事) (日本) (日本) </td <td></td> <td>22</td> <td>29</td> <td>25</td> <td>22</td> <td>29</td> <td>22</td> <td></td> <td></td>		22	29	25	22	29	22		
観光(宿泊) 観光(日帰り) 加速 日 日 財 日 財 日 財 大 財 リ リ リ リ リ リ リ リ リ リ リ	イ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 6 4 7 4 8 4 8 4 8 4 9 4 8 4 9 4 9 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	787	1,200	1, 200	1,200	1, 200	1,200		
観光(日帰り) 処 理 方 日 平 均 日 最 大 時 間 最 大 地 下 水 窓	イ 田 H H Y Y	0	0	0	0	0	0		
加 田	日 日 イ/	0	0	0	0	0	0		
日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 </td <td>:/人目 :/人目</td> <td>OD法</td> <td>300</td> <td>OD法</td> <td>00法</td> <td>梨(10</td> <td>OD法</td> <td></td> <td></td>	:/人目 :/人目	OD法	300	OD法	00法	梨(10	OD法		
田 時 部 ※ 本 十 十 ※ 本 在 本 在	(八人日	270	270	270	270	027	270		
年 者 ※ 正 十 十 大 茶 孫		335	320	320	320	320	320		
H 下 六 版	リップ/人目	640	640	640	640	049	640		
聚	m ³ / ⊟	65	64	64	64	1 9	64		
₩.	m³/ ⊟	264	384	384	384	384	384		
画 汚 観 光 m	m ³ / ⊟	0	0	0	0	0	0		
工 滑	m³/ ⊞	2	9	2	2	9	2		
地下水	m ³ / ⊟	51	LL	22	LL	LL	2.2		
域 大	m³/ ⊞	320	466	466	466	466	466		
理能力加	m ³ / ⊟	300	200	200	200	200	200		
放 流 先		天竜川	天竜川	天竜川	天竜川	天竜川	天竜川		
建設費(百万円)	万円)	2,053	2,053	2,053	2,053	2,053	2,053		
業計画人口	\mathcal{C}	1,200	1,200	1, 200	1,200	1, 200	1,200	※観光人口は含まない	さ含まない
1人当り事業費(千円)	(千円)	1, 711	1,711	1, 711	1, 711	1,711	1,711		

Ш		流総計画	既全体計画	変更全体計画	都市計画決定	既事業計画	変更事業計画	備	析
炎	年	令和17年	令和7年	令和12年	令和7年	令和7年	令和12年		
積	ha	105	105	105	105	105	105		
Œ	丫	1, 509	2,300	2, 300	2,300	2,300	2,300		
(宿泊)	Y	0	0	0	0	0	0		
観光(日帰り)	\prec	0	0	0	0	0	0		
方 宝	计	300年	OD法	OD法	OD法	00法	00法		
松	1%/人日	027	270	270	270	270	270		
大 ジュ	1%/人日	335	320	320	320	320	320		
大 ジュ	19%/人日	640	640	640	640	640	640		
长	m ³ / ∃	99	64	64	64	64	64		
庭	m³/ ⊟	909	736	736	736	736	982		
光 1	m^3/ \boxminus	0	0	0	0	0	0		
I I	$m^3/ \ egin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	9	0	0	0	0	0		
水	m^3/ eta	86	147	147	147	147	147		
	m³/ ⊞	609	883	883	883	883	883		
力 ₁	m^3/H	009	006	006	006	006	006		
先		農業用排水路	農業用排水路	農業用排水路	農業用排水路	農業用排水路	農業用排水路		
事(百	費(百万円)	2, 713	2,713	2, 713	2, 713	2, 713	2,713		
П	(人)	2,300	2,300	2, 300	2,300	2,300	2,300	※観光人口は含まない	含まない
(田士) 番森軍 4 示 Y	(H.H.)	00 +	0 (0		1				

下水道事業コスト構造改善プログラムチェックリスト

長2					き改善プログラムチェックリスト 		-
分	類	<具体的施策>	施	策内容	<施策事例>	実施内容	確認
		1 構想段階からの合意		行動計画	○ コスト構造改革プログラム ◎ 新規施策		
	7	形成手続きの積極的導入・推進		1 - 1	〇 段階的な事業説明会の実施		_
	1	等八·推進		1 - 2	〇 関係住民の代表者を含む協議会の設置		_
	合 意 形			1 - 3	◎ パブリック・インボルブメント(PI)の実施		_
	成 · 協			1 - 4	○ ホームページによる下水道事業の情報公開(経営関連情報、管理指標による進捗評価等)		_
事	議・手		関係機関との事業調 整	2 - 1	◎ 関連部局との連絡会議の開催(汚水処理連絡会議等)		_
業の	続き	速化・簡素化		2 - 2	〇 隣接自治体との調整会議の開催		_
スピード	の 改善			2 - 3	○ 道路工事連絡調整会議等による、共同工事の工程や工 事区間の調整		_
アップ	2		下水道整備効果の事 前予測と事後評価	3 - 1	○ 事業評価の厳格な実施		_
	】事業のモ	F		3 - 2	◎ 下水道施策別の評価(目標達成度評価等の実施)		-
	重 点 化	4 重点的な投資や事業 の進捗管理の徹底に		4 - 1	○ 事業箇所の厳選		_
	· 集 中	よる事業効果の早期 発現		4 - 2	○ 「4つの点検」(役割分担・コスト管理・時間管理・整備効果)の実施		_
	化		工事の完成時期明示	4 - 3	○ 完成時期を明示した工事やプロジェクトの実施(特定地区 における浸水対策事業の完成時期等)		_
		5 技術基準類の見直し	管路施設基準の見直 I	管渠基準(D見直し		
				5 - 1	△ 地形に合わせた管渠勾配の急勾配化		_
				5 - 2	○ 汚水管渠における水路や地下埋設物の下越し部における ベンドサイフォン(改良型伏越し)の採用		
				シールドエ	法や推進工法における新工法の採用と施工の効率化		
				5 - 3			
				5 - 4	中継ポンプ場施工時における発進立坑機能の確保(中間 スラブの後施工等)		_
				5 - 5	◎ シールドニ次覆工厚の縮小、二次覆工省略型シールドエ 法の採用		
				5 - 6			
					の数・規模・材料等の見直し		
				5 - 7	△ マンホール最大間隔の見直し (マンホール間隔の見直しによるマンホール設置数の削減等)		
				5 - 8	△ 小型マンホールの使用		_
				5 - 9	△ 管路屈曲部での曲管の使用によるマンホール数の削減 ○ 起点マンホールの共有化		
					ドロップシャフトの採用		
計	7			5 - 11	△ (高落差接合のマンホールへの採用によるマンホール規模の縮小等)		
画	1				・耐震化工法		
設計	計画				□ 非開削耐震化工法の採用		
計 ·	•		ポンプ施設基準の見		と形式の見直し		
施工の最	設計の見		直し	5 - 14	マンホールポンブの対象範囲の拡大 △ (マンホールポンブの連結によるボンブ施設の簡素化、従来 形式(建屋式)の中継ポンブ場からマンホールポンブ場形式へ の見直(等)		_
適 化	直し			5 - 15	△後沈砂池の採用		
					Δ ふかし上げポンプ場の採用		
					iの簡易化・効率化 ◎ 省スペース型制御盤採用(マンホールポンプ用)		
				5 - 18	○ 沈砂機能の一部省略		_
				5 - 19	(沈砂池を間略化し砂により住及で対応する寺)		
					〇 無注水型ポンプの採用		
			処理場施設基準の見 直し	汚泥処理カ	施設の見直しと設備の高効率化		
					○ 効率的な汚泥処理施設の導入		_
				5 - 22	○ 濃縮・貯留設備を省略した脱水機の導入 ◎ 破砕方式の採用による除塵の省略		
					◎ 破砕ガ丸の抹用による味座の自略 役の見直しと設備の高効率化		
					○ ステップ流入式の生物学的高度処理の採用		_
				5 - 25	〇 膜分離活性汚泥法の採用		
				施設の効果	率的な段階的整備 		
				5 - 26	流入水量の伸びにあわせた施設整備の最適化 〇(供用初期における最初沈澱池の省略、沈砂除去設備の 簡素化、第1期対応のマンホールポンプの設置等)		_

下水道事業コスト構造改善プログラムチェックリスト

表2					:改善プログラムチェックリスト 		
分	·類	<具体的施策>		策内容 行動計画	<施策事例> ○ ¬スト構造改革プログラム ◎ 新規施策	実施内容	確認
	Ι	5 技術基準類の見直し	生命 6 年年 //	施設の標準			_
			HE IL		〇 ユニット式マンホールポンプの採用		
				施設の多機 5 - 28	ERIC ○ 多機能型施設の整備		_
			二次製品・量産品の 利用	二次製品の			_
			利用		△ 工事におけるプレキャスト製品の利用		
				量産品の利	用		-
			施工材料の見直し	施工材料の			
					〇 リブ付き硬質塩化ビニル管の採用		_
				5 - 32 5 - 33	○ 圧送管へのポリエチレン管の採用◎ 広幅タイプ鋼矢板の採用		
計 画	1	6 技術基準の弾力的運	連携·共同·集約処理	6 - 1			_
· 設	計	用(ローカルルールの 設定)			△ 下水道と農業集落排水施設等との接続		
計 施	画・設			6 - 2	〇 一般廃棄物処理事業との連携処理		
エの	計の		計画の見直し	6 - 3	△ 汚泥の集約処理		_
最 適 化	見直し		可回の元直し	6 - 4	〇 処理区の見直し(市町村間連携を含む)		_
				6 - 5	〇 下水道管渠埋設ルートの見直し		_
				6 - 6	〇 供用区域外におけるフレックスプランの導入		_
				6 - 7	〇 下水道施設のネットワーク化		_
			下水道未普及解消 クィックプロジェクト社 会実験の実施	6 - 8	◎ 下水道未普及解消クィックプロジェクト社会実験の実施		_
			既存施設の活用	6 - 9	〇 既存施設を活用した施設整備		_
		7 設計VEによる計画・ 設計の見直し	設計VE制度の導入	7 - 1	△ 設計VE制度の導入		_
		8 工事における事業間 連携等の推進	他工事・他事業との 連携	8 - 1	△ 同時施工によるコスト低減(道路管理者、地下埋設物管理 者等)		-
				8 - 2	△ 区画整理事業、宅地開発事業との連携		-
	2			8 - 3	◎ 仮設物、建設機械の共用		_
	施 工	9 建設副産物対策等の 推進	施設整備の促進	9 - 1	○ 汚泥炭化設備の導入		-
	り見った			9 - 2	◎ 汚泥溶融炉、汚泥焼却炉等の資源化施設の整備促進		_
	直し		再生資源・資材の利 用促進	9 - 3	〇 発生土の利用		_
				9 - 4	△ 再生材の利用(再生クラッシャーラン、再生アスファルト合 材等)		_
計画				9 - 5	○ その他資源の有効利用(石炭灰、下水汚泥溶融スラグ等)		_
画 · 設	【 3 】	10 新技術、民間技術の 積極的活用	NETIS、LOTUS等を 通じた新技術、民間 技術の積極的活用	10 - 1	〇 LOTUSプロジェクトの活用		-
計 ·	積極的採用 】民間技術			10 - 2	◎ NETIS等を通じた民間技術の積極的活用		_
施工の	採技術の	11 産学官連携による技 術研究開発の推進	必要な技術課題の公 表と技術研究開発の 推進	11 - 1	〇 民間や大学等の研究機関と共同での技術開発の推進		_
最 適 化		12 温室効果ガス排出抑制対策の一層の推進	省エネルギーの促進	12 - 1	○ 省エネルギー機器の導入(超微細気泡散気装置、合成樹脂性汚泥掻寄機等)		-
	_		未利用エネルギーの 活用	12 - 2	Δ 消化ガス利用の推進		_
	[4]			12 - 3	△ 未利用エネルギー(風力、水力、太陽光、下水熱)の導入		0
	社会		温室効果ガス排出抑制対策の推進 低燃費刑建設機械等	12 - 4	◎ 汚泥焼却に伴うN₂O排出の抑制		_
	的コス	13 社会的影響の低減	低燃費型建設機械等 の普及促進 排出ガス対策型及び	12 - 5	◎ 低燃費型建設機械等の普及促進		_
	۲ ۱	(騒音・振動等の抑制、大気環境に与え	採出ガス対策空及び 低騒音・低振動型建 設機械等の普及促進	13 - 1	◎ 排出ガス対策型建設機械等の普及促進		_
	低 減	る負荷の低減、工事	設機械等の普及促進 工事における渋滞損	13 - 2	◎ 低騒音・低振動型建設機械等の普及促進		_
	n94	による渋滞損失の低 減、事故の防止)	大争にありる反流損 失の低減、事故の防止	13 - 3	◎ 工事期間中の交通渋滞による社会的影響の低減		_
				13 - 4	◎ 管渠工事における埋設物の破損防止		_

下水道事業コスト構造改善プログラムチェックリスト

表2					5世	善プログラムチェックリスト		
分	`類	<具体的施策>		策内容 行動計画	0	<施策事例> コスト構造改革プログラム ◎ 新規施策	実施内容	確認
	1	14 産学官共同研究によ る維持管理技術の高 度化		14 - 1	0	流量計等センサー技術の活用による運転管理の簡素化		-
	民	及10		14 - 2	Δ	光ファイバーを活用した施設の遠方監視・制御		_
	間 技 術		新技術を活用した点 検技術の高度化	14 - 3	-	管路内点検技術の高度化の推進 非破壊検査技術等を活用した点検技術の高度化の推進		
	の 積	15 施設の長寿命化を図 るための技術基準類	技術基準類の策定	15 - 1	0	コンクリート防食指針の改訂		_
	極的な活	の策定	施設の耐久性を向上 させる資材の使用と 対策の実施	15 - 2	Δ	耐食性材料の使用や防食被覆工法の採用		-
維	用			15 - 3	0	硫化水素発生抑制対策の実施		-
持 管 理		16 公共施設の点検結果 等にかかるデータ ベースの整備	点検結果等のデータ ベースの整備と活用 の推進	16 - 1	0	下水道台帳のデジタル化の推進		_
の 最		ハースの金浦	07推進	16 - 2	0	点検結果等のデータベースの整備推進		-
適 化	2			16 - 3	Δ	地図情報システム(GIS)の導入による他部門との情報共有化		-
	戦略的	17 公共施設の健全度を 評価するための指標 の設定		17 - 1	0	下水道施設の劣化診断による健全度評価手法の構築		_
	な 維	18 公共施設の長寿命化 に関する計画策定の	長寿命化計画の策定	18 - 1	0	台帳データ・点検データを利用した修繕・更新判断のルー ル化		_
	持 管 理	推進		18 - 2	0	下水道長寿命化対策の推進		0
	4	19 地域の実情や施設特性に応じた維持管理	地域住民等の参画	19 - 1	0	地域住民の参加による維持管理の推進		-
		の推進	修繕方法の見直し	19 - 2	0	管渠の清掃・点検及び簡易的な補修の同時施工		0
	の推進 電子調達	20 CALS/ECの活用によ る建設工事の生産性 の向上	CALS/ECの活用によ る建設工事の生産性 の向上	20 - 1	Δ	CALS/ECの導入による設計・施工・維持管理の各段階における情報の統一化・電子化		_
		21 総合評価方式の促進	総合評価方式の促進	21 - 1	Δ	総合評価方式の採用		_
				21 - 2	0	プロポーザル方式の導入		_
				21 - 3	0	受注者が誠実に技術提案を履行する仕組みの導入		-
		22 多様な発注方式の活 用	多様な発注方式の活 用	22 - 1	Δ	設計施工一括発注方式(DB)等の導入		_
		23 企業の持つ技術力・ 経営力の適正な評価	技術力を評価できる 環境の整備	23 - 1	0	成績評定システムの構築及びデータベース化		-
調	2	24 民間の技術力・ノウハ ウを活用した調達方 式の積極的推進	PFI の活用	24 - 1	0	PFI を活用し、温室効果ガス排出抑制対策等のため下水 汚泥等の循環利用を推進		_
達の最高	入札・契		民間活用	24 - 2	0	維持管理における民間事業者の技術力活用		-
追化	約の見	の導入・拡大	コンストラクション・マ ネジメント(CM方式) の導入	25 - 1	0	CM 方式の導入		_
	直し	26 複数年にわたる工事 の円滑な執行のため の手続き改善	国庫債務負担行為の 活用	26 - 1	Δ	国庫債務負担行為の活用		_
		27 受発注者のパート ナーシップの構築に	受発注者間の協議の 迅速化と設計思想の	27 - 1	0	ワンデーレスポンスの推進		-
		よる建設システムの生産性向上	効率的な伝達	27 - 2	0	三者会議の推進		_
		28 公共工事等の品質確 保の推進		28 - 1	0	出来高部分払方式の採用		_
			低入札対策の推進	28 - 2	0	低入札価格調査制度の導入		_
				28 - 3	0	最低制限価格の設定		_
	見積【 直算3 しの】	29 市場を的確に反映し た積算方式の整備	市場を反映した積算 方式の見直し	29 - 1	0	特別調査等を活用した資材単価の設定		_

下水道法事業計画協議チェックリスト

【H28-04版】	<u> 水迫法事業計画協議チェックリスト (1/3)</u>
項目	主な実施(変更)内容を記載
◆公共下水道の配置、能力、構造	
・主要な吐口及び管渠	変更なし 一般家屋 (汚水)大草:1,380m 片桐:2,300m
・水処理施設及び汚泥処理施設	変更なし
・ポンプ施設	変更なし
・その他	
◆予定処理区域	変更なし (汚水)大草:57ha 片桐:105ha
・計画面積及び計画人口	変更なし 大草:1,200人 片桐:2,300人
•汚水量(原単位•負荷量)	変更なし (大草・片桐:汚水量2701/人・日、負荷量BOD49g/人・日、SS52g/人・日)
・雨水計画(流出係数や確率年)	雨水計画なし
・放流先の状況(基準など)	変更なし 大草:天竜川 片桐:農業用排水路
・その他	

		確認内	容			確認	備 考
◆事業認可図書(†	劦議申請	書鑑 市町村-	→県知事	宛)		0	
◆事業計画書(公	共・特環と	も同じ様式)					
表紙	0	第1表の1	0	第1表の2	なし		
第2表の1	0	第2表の2	なし	第3表の1	0	0	
第3表の2	なし	第4表	0	第5表	なし		
第6表	なし						
◆事業計画説明書	÷					0	
◆事業計画の概	要					0	
◇全体計画の	概要及び	「理由(汚水、同	雨水)			0	
◇事業計画 <i>の</i>	概要及び	「理由(汚水、同	雨水)				
•流総、都決、	全体計画	、認可計画の	0				
◆予定処理区域	及びその	周辺の地域の	0				
◇予定処理区	域及びそ	の決定の理由					
・エリアマップ	との整合、	他の整備手法					
•社会的•経済	f的な理由	1、事業優先度	0	(別紙)上位計画との比較 参照			
・処理区拡大(の場合、配	面整備率70%		(別紙)上世計画との比較 参照			
・財政、執行能	も力等の点	たで5~7年で					
・雨水整備の	必要性、過	過去の浸水被	害の状況	、貯留·浸透 <i>0</i>	検討		
◇管渠、処理	施設及び	ポンプ場の位	置の決定	の理由		0	
・地形条件、交	办率的配 置	置、土地の用途	、 周辺環	環境への影響		O	
◆計画下水量及	びその算	出の根拠				0	
◇人口及び人	、口密度並	びにこれらの	推定の根	剥 拠		0	
・過去の人口:	推移、計画	画人口の推定、	その他料	乎来計画等		O	
				根拠及び家庭	下水、工		
	水等の量	及びこれらの	准定根拠	:		0	
・過去の上水	道実績、沒	5水処理実績(有収、流	入)、その他将	来計画		
◇降雨量(降i	雨強度式:	を含む)及びそ	の決定の	の理由			雨水計画なし
・過去の実績	長、適切な	安全度、関	重する河	川整備計画を	など		MANUEL & C
◇流出係数及	びその決	定の理由					
- 工種別流出	系数等の	算出根拠					雨水計画なし
		検討(貯留・浸 場合は、流出(こよる下水管渠 定根拠)	への流		NATIONAL ELIZABILITATION
◇主要な管渠	の流量計	算及びポンプ	場の容量	計算			=D=1+641경기
・主要な管渠の	の流量計算	算、余裕率等	<u>新面決</u> 定	根拠、ポンプ容	影量	O	設計指針通り
•							

【H28-04版】	<u> </u>	一凹 協議す	<u>-エックリスト (2/3)</u>	
	確認内容	確認	備 考	
	流水及び処理施設において処理すべき、又水に流入する下水の予定水質並びにその			
	ら定水質、汚濁負荷量及びその推定の根拠 とその水質の実績(推定)	0	天竜川流総計画と整合	
◇工場排水の取扱力 荷量並びにその推定	5針及び受入れ工場排水の予定水質及び汚 の根拠	i濁負 〇	処理区域内に排水量を見込むべき 工場は立地していない。	
・汚濁負荷量及びその	の水質の実績(推定)		天竜川流総計画と整合	
◇除害施設設置基準	<u> </u>	0		
◇処理の対象外とす	る工場及び対象外とする理由			
・工場排水を下水道(こ受け入れない場合の措置	0	処理対象外工場立地なし 	
◇計画放流水質及び	「その算定根拠(科学的な方法を用いて算出	1)		
・計画放流水質に対	応した処理方法の選定	_		
・処理施設の評価の	根拠及び過去の放流水質実績			
定の理由	処理施設における計画汚濁負荷量及びそ	の決 〇	天竜川流総計画に準じる	
	等、法定計画との調整・整合			
	十算(処理場・ポンプ場の容量計算書) スペンは、海災計画がまる場合で悪)	0		
	記(※は、流総計画がある場合不要)			
	祭における水利用の現況及びその見通し 上水、工業、農業)、取水量、拡張の可能性 他の水利用状況	、新〇		
	◆毎会計年度の工事費の予定額及びその予定財源			
	- る財政計画書(表2-4-15)	0		
	の点で概ね5~7年で整備可能	0		
◆その他				
◆ ◇基準年次別の段階	的建設計画	0		
)計画(ストックマネジメント計画)	_		
◇汚泥の最終処分割				
	、有効利用及び共同化と適正処理	0		
◇施設の耐震診断の				
	震診断実施状況を説明する資料			
・耐震診断結果を説		-		
	今後の耐震方策の方針を説明する資料			
	「る検討、計画(地域防災計画、BCP等)			
◇上位計画との比較				
	・3X、3X2 - 7 - 10) 構造改革プログラムチェックリスト(表2ー4-	-17)		
V 1 13 112 11 11 11 11	・ルギー等の有効利用検討、計画			
	スエリアマップとの整合			
◇流域別下水道総合				
	161回との至日 :の整合(流域関連公共下水道の場合)		□ 本地区は単独処理区	
	の発音(流域関連公共下水道の場合) の他都市計画事業との整合		小地区は手体だ性区	
◇構造についてのガ			 設計指針通り	
		 	武司 田辺 西ツ	
◇環境省協議の有無		-		
◇関係他部局等との	加哉、ての桁米	_		

※確認欄には、〇・×を記載する。なお、簡単な説明があれば備考へ記載する。

下水道法事業計画協議チェックリスト (3/3)【H28-04版】 確認 ◆添付図面等 0 ◆下水道法施行令第3条に基づく公示に関する書類 0 ◆下水道計画一般図(縮尺5万分の1以上の地形図) ◇市町村名及びその境界線 ◇方位、縮尺及び凡例 0 ◇予定処理区域の境界線並びに処理区、処理分区又は排水区域の境界線及び名称 Ο ◇雨水の流入する区域の境界線 0 ◇主要な管渠のうち骨格となる管渠の位置及び名称、吐口の位置並びに下水放流先の名称 〉処理施設(流関にあっては流域下水道との接続点)及びポンプ施設の位置及び名称 ◇予定処理区域内の主な道路、河川、鉄道等の位置及び名称 ◇流関公共下水道は、接続点及びポンプ施設並びに処理施設の位置並びに名称 ◇市街化地域(未設定の場合は既成市街地及び市街化が予想される区域。)の境界線 ◇水質環境基準の類型、類型指定区間の範囲並びに水質基準点の位置及び名称 ◇当該水域の利水の状況(利水地点等) ◇既に設置された公共下水道により下水の排除が可能である区域の境界線 ◆主要な管渠の平面図(縮尺5千分の以上の地形図) 0 ◇市町村名及びその境界線 ◇方位、縮尺及び凡例 ◇等高線 Ο ◇雨水の流入する区域の境界線 ◇予定処理区域の境界線並びに処理区、処理分区又は排水区の境界線及び名称 0 ◇主要な管渠の位置、形状、内のり寸法、勾配、縦断図面との対照番号及び区間距離並びに下水の 0 流れの方向、点検を実施するためのマンホールの位置 ◇主要な管渠を補完する貯留施設の位置、形状、能力、当該貯留施設への下水の流れの方向及び 貯施設からの下水の流れの方向 ◇主要な管渠の排水区画割 ◇吐口の位置及び名称並びに下水の放流先の名称 ◇処理施設及びポンプ施設の敷地境界線及び名称 ◇予定処理区域内の主な道路、河川、鉄道等の位置及び名称 ◇流関公共下水道は、接続点の位置、形状、内のり寸法及び区間距離、下水の流れの方向 ◇当該管渠に係るポンプ施設並びに処理施設 ◇既設の管渠の位置及び既設の管渠により下水の排除が可能である区域の境界線 ◆主要な管渠の縦断面図(縮尺縦2百分の1以上、横5千分の1以上の縦断図面) ◇管渠の位置、形状、内のり寸法、勾配、平面図との対照番号、区間距離、逓加距離、管渠底高及び 十被り ◇縮尺、凡例及び基準地盤高 ◇地盤面の位置及び地盤高 ◇マンホールの位置 ◇流入管渠の位置、形状、内のり寸法、管渠底高及び番号 ◇下水の放流先の名称、高水位、低水位及び平水位 ◇河川、地下鉄、地下道等管渠を横断する主要な施設の位置及び名称 ◇流関公共下水道は、接続点及びポンプ施設並びに処理施設の位置、形状並びに名称 ◆処理施設及びポンプ施設の平面図、水位関係図及び構造図 ◇平面図(縮尺2千分の1以上の平面図) 処理施設及びポンプ施設の名称及び敷地の境界線・方位、縮尺及び凡例 処理施設及びポンプ施設の敷地内の主要な施設の位置、形状、寸法及び名称 既設の処理施設又はポンプ施設の位置 ◇水位関係図(縮尺縦2百分の1以上、横2千分の1以上の断面図)

◆下水の放流先の状況を明らかにする図面(下水道計画一般図により表す) ※確認欄には、○・×を記載する。なお、簡単な説明があれば備考へ記載する。

◇構造図(縮尺縦5百分の1以上の平面図、断面図、その他の図面)

下水の最高、最低及び平均の水位 ·ポンプ室の床高 地盤面の位置及び地盤高 ·縮尺及び基準地盤面

処理施設及びポンプ施設の敷地内の主要な施設の位置、形状、天端、底高及び名称

・下水の放流先の名称、計画高水位(無い場合既往最高水位)、底水位及び平水位

|・処理施設及びポンプ施設の敷地内の主要な施設の形状、寸法、配置及び名称、縮尺

表4

中川村公共下水道事業計画の経緯表

表4	1	中川竹五六下小川	自事未 計画の程程:	
項	全体計画	都市計画決定		計画
目	主体計画	部市市岡西人足	下水道法	都市計画法
	当初 平成2年度策定 汚水165ha 大草処理区 55ha 片桐処理区 110ha			
		当初(大草) 中川村告示 号 平成4年11月24日 汚水57ha 大草処理区 57ha		
			当初(大草) 県指令5生排第 号 平成5年10月22日 汚水57ha 大草処理区 57ha	当初(大草) 県指令5生排第 号 平成5年11月18日 汚水57ha 大草処理区 57ha
		当初(片桐) 中川村告示 号 平成9年3月3日 汚水95ha	当初(片桐) 県指令9生排第 号 平成9年4月3日 汚水95ha	当初(片桐) 県指令9生排第 号 平成9年11月13日 汚水95ha
	Mr. C. C. C.	片桐処理区 95ha	片桐処理区 95ha	片桐処理区 95ha
	第1回見直し	第1回変更(大草・片桐)	第1回変更(大草・片桐)	第1回変更(大草・片桐)
	平成11年度策定	中川村告示 号	県指令11生排第 号	県指令11生排第 号
	汚水162ha	平成12年3月22日	平成12年3月22日	平成12年3月22日
	大草処理区 57ha	汚水162ha	汚水162ha	汚水162ha
	片桐処理区 105ha	大草処理区 57ha	大草処理区 57ha	大草処理区 57ha
		片桐処理区 105ha	片桐処理区 105ha	片桐処理区 105ha
			第2回変更(片桐)	第2回変更(片桐)
			県指令14生排第 号	県指令14生排第 号
経			平成15年1月30日	平成15年1月30日
過			汚水105ha	汚水105ha
年			片桐処理区 105ha	片桐処理区 105ha
一次			第2回変更(大草)	第2回変更(大草)
/			県指令18生排第4-18号	県指令18生排第3-11号
			宗指令18年排第4-18 5 平成19年3月13日	
				平成19年3月20日
			汚水57ha	汚水57ha
			大草処理区 57ha	大草処理区 57ha
			第3回変更(大草・片桐)	第3回変更(大草・片桐)
				県指令22生排第12-8号
			平成23年3月9日	平成23年3月7日
			汚水105ha	汚水105ha
			大草処理区 57ha	大草処理区 57ha
			片桐処理区 105ha	片桐処理区 105ha
			第4回変更(大草・片桐)	第4回変更(大草·片桐)
			県指令27生排第16-13号	県指令27生排第17-8号
			平成27年11月4日	平成27年11月4日
			汚水105ha	汚水105ha
			大草処理区 57ha	大草処理区 57ha
			片桐処理区 105ha	片桐処理区 105ha
			第5回変更(大草·片桐)	
			県指令30生排第86-16号	
			平成30年10月16日	
			汚水105ha	
			大草処理区 57ha	
			片桐処理区 105ha	
			第6回変更(大草・片桐)	第5回変更(大草・片桐)
			県指令2生排第14号	県指令2生排第16号
			令和2年12月10日	令和2年12月10日
			汚れ105ha	ライル2年12月10日 汚水105ha
			大草処理区 57ha	大草処理区 57ha
				-
	1		片桐処理区 105ha	片桐処理区 105ha